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Introduction 

        Benoit B. Mandelbrot‟s book The Fractal Geometry of Nature was published in 1983.  This 

publication updated and replaced two earlier works from 1975 and 1977 and codified his theory 

of fractal geometry as a new branch of mathematics.  As a result of the creation of fractal 

geometry in the world of mathematics, music theorists have since created new techniques for 

analyzing music.  These methods include study of fractal structure, fractal dimension, strange 

attractors in music, and Fourier analysis of musical lines. 

        For my own research in this area, I chose to analyze the fifteen Two-Part Inventions and 

fifteen Three-Part Inventions of Johann Sebastian Bach (1685-1750).
1
  Each of these pieces can 

“be defined as a short contrapuntal work centering around the development of material from one 

or two motives”.
2
  While each piece has a unique motive, the compositional technique is the 

same, making all thirty pieces musically and technically different but similar in style.  I based my 

analysis on two primary sources: “Fractal Geometry of Music,” a 1993 article by Kenneth J. and 

Andreas J. Hsu, and Fractals in Music: Introductory Mathematics for Musical Analysis, 

published in 2007 by Charles Madden.  Both sources suggested new methods of musical 

analysis, some of which I chose to use in my research. 

        This paper is divided into two main sections.  The first section explains each concept as it is 

understood in the realm of mathematics, and then explains the applications for that concept to 

musical analysis.  After discussion of the four concepts (fractal structure, fractal dimension, 

strange attractors, and Fourier analysis) and their applications to musical analysis, the second 

section of the paper begins by outlining the process that I developed to analyze the music using 

all four concepts.  Following this is a summary of my findings in each of the four areas.  Finally, 

                                                 
1 The key difference between the Two-Part Inventions and the Three-Part Inventions is that the Two-Part Inventions 

have two independent lines, or voices, while the Three-Part Inventions are made up of three independent voices. 
2Kent Kennan, Counterpoint, 4th ed. (Upper Saddle River, N.J.: Prentice-Hall, 1999), 126. 
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I discuss each piece individually, commenting on the computed dimensions, attractor plots, and 

spectral analysis graphs.  

Fractal Structure 

Mathematical Definition 

         Benoit B. Mandlebrot, a pioneer in the field of fractal geometry, explains his reasons for 

developing fractal geometry in his book, The Fractal Geometry of Nature.  Mandelbrot begins by 

discussing the inability of standard (Euclidean) geometry to describe the physical world by 

asking, “Why is geometry often described as „cold‟ and „dry?‟  One reason lies in its inability to 

describe the shape of a cloud, a mountain, a coastline, or a tree.  Clouds are not spheres, 

mountains are not cones, coastlines are not circles, and bark is not smooth . . .”.
3
  Mandelbrot 

created his “geometry of nature” to correct this inadequacy.  He explains that his fractal 

geometry “describes many of the irregular and fragmented patterns around, and leads to full-

fledged theories, by identifying a family of shapes I call fractals.”  Mandelbrot‟s fractals are 

defined both by their dimension and by their tendency to be scaling, or self-similar at all scales. 

        On the simplest level, fractals are generated by taking a basic “seed,” or motive, and 

applying an iterative formula to the seed multiple times.
4
  For example, the well-known fractal 

the Koch curve begins as an equilateral triangle.  To produce this fractal, each side of the triangle 

is divided into three equal segments, the middle segment of each side is removed, and two 

segments equal to the length of the middle segment are put in its place to form another 

equilateral triangle.  As this process is iterated over and over, the original equilateral triangle 

soon becomes the complex snowflake known as the Koch curve (See Fig. 1).
5
 

                                                 
3 Benoit Mandelbrot, The Fractal Geometry of Nature, Rev. ed. (New York: W.H. Freeman and Company, 1983), 1. 
4 Larry Solomon, “The Fractal Nature of Music”; available from http://solomonsmusic.net/fracmus.htm; Internet; 

accessed 7 Feb 2008.  
5
 Dietrick E. Thomsen, “Making Music—Fractally,” Science News, Vol. 117, no. 12 (1980): 187.  
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Fig.1.  The Koch Curve.
6
 

 

Musical Application 

        In his article, “The Fractal Nature of Music,” Larry Solomon defines this idea of 

transforming a motive into a fractal as “the imitation, or translation, of a basic shape with 

attendant symmetry operations,” and further defines these symmetry operations as the basic 

mathematical operations of translation, reflection, and rotation.  Solomon compares these 

mathematical operations to the musical operations of transposition (moving the musical motive 

up or down), retrograde (writing the motive backwards), augmentation (lengthening the motive 

by using longer note values), diminution (shortening the motive by using shorter note values), 

and inversion (turning the motive upside down), all of which are used frequently in contrapuntal 

composition.   Contrapuntal textures result from “the combination of independent, equally 

important lines.”
7
  In The Analysis of Musical Form, James Mathes defines imitation as “the 

repetition of material in a different voice or part at different times,” and states that imitation is 

often used “for elaborating musical ideas” and is frequently associated with contrapuntal genres.
8
  

The two variables in imitative writing are pitch interval (referring to distance between voices) 

and time interval (referring to the time distance between voice entrances).
9
  According to 

                                                 
6 Ibid. 
7 James Mathes, The Analysis of Musical Form, (Upper Saddle River, NJ: Prentice Hall, 2007), 274. 
8 Ibid. 
9 Ibid. 
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Solomon, this idea of transformation that is used to create fractals is also inherent in musical 

genres that are built on imitative contrapuntal techniques, such as canon and invention. 

        A canon is a “composition in which the voices enter successively at determined pitch and 

time intervals, all performing the same melody.”
10

  Thus, in a canon, all of the voices sing the 

same motive, but the individual voices‟ motives can be altered by any of the musical symmetry 

operations (See Fig. 2). 

Fig. 2.  Canon at the unison: Palestrina, Illumina oculos meos, mm. 1-9.
11

 

 

        As seen in Fig. 2, in a canon at the unison each voice enters on the same note.  The entrance 

of each voice is marked by a red bracket, and the red arrows show that each voice is singing the 

same melody throughout the piece.  Since they do not begin singing at the same time, the voices 

                                                 
10 Donald J. Grout, and Claude V Palisca, A History of Western Music,  6th ed.  (New York: 

    W.W. Norton & Company, 2001), 791. 
11 Milo Wold and others, An Outline History of Western Music, 9th ed.  (Boston: McGraw Hill,    

      1998), 46. 
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appear to be singing different melodies; however, the three black brackets and arrows show that 

the voices continue to sing the same lines throughout the piece with the same time delay as at the 

beginning.  Thus, this simple canon was created from a single musical motive that was strictly 

imitated in three voices at the same pitch level, although at different time intervals.     

        Imitation is also used as a compositional technique in the genre of invention.  An invention 

is similar to a canon, but, unlike the voices of a canon, the voices of an invention do not always 

use the same pitch interval throughout the piece.  Instead, the invention is “based on a single 

theme, normally stated at the outset by each voice in succession, and reappearing at intervals 

throughout the piece.”
12

  This theme (called either a motive or a subject) is typically short, and is 

altered by means of contrapuntal devices throughout the piece (See Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

                                                 
12 Douglass M. Green,  Form in Tonal Music: An Introduction to Analysis, 2nd ed. (New York: Holt, Rinehart and 

Winston, 1979), 283. 
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Fig. 3.  Analysis of Two-Part Invention: J.S. Bach, Invention No. 1 in C Major, mm. 1-10.
13

 

 

        Fig. 3 shows a partial analysis of Johann Sebastian Bach‟s Two-Part Invention in C major 

by Walter Solomon.  In this analysis, the opening subject, labeled S, is broken down into two 

motives, a and b.  A third motive, c, which was derived from part of b, is also used, especially at 

cadential moments.  In the same way that simple fractals can be constructed using a seed and 

basic symmetry operations, this invention is built almost entirely from the short subject 

introduced in the first measure.
14

  

                                                 
13 Solomon. 
14 Solomon. 
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        Madden‟s method of creating a graph that shows the shape of the musical line by plotting 

pitch on the vertical axis versus time on the horizontal axis gives a visual representation of the 

musical line that makes the repeated entrances of the motive easier to see (See Fig. 4).   

Fig. 4.  Bach, Two-Part Invention No. 1, right hand line, subject entrances marked in red. 

            

Fractal Dimension 

Mathematical Definition 

Similarity dimension   

        Our world is “made up of objects which exist in integer dimensions: single dimensional 

points, one dimensional lines and curves, two dimension plane figures like circles and squares, 

and three dimensional solid objects such as spheres and cubes.”
15

  Sometimes, however, integers 

cannot accurately describe the dimensions of an object, since “dimension” is an approximate 

measurement of how much space a set fills.  In Fractal Geometry: Mathematical Foundations 

and Applications, Kenneth Falconer explains that dimension is a “measure of the prominence of 

the irregularities of a set when viewed at very small scales.”
16

  As explained by Solomon, “planet 

Earth is described in traditional science as a sphere or ellipsoid although its surface is not 

smooth, but rough . . .  The coastline and boundary of India may be described in Euclidean 

                                                 
15 “Fractals and Fractal Geometry,” Thinkquest; available from http://www.thinkquest.org/pls/html/think.library;   

 internet; accessed 5 April 2008.   
16 Kenneth Falconer, Fractal Geometry: Mathematical Foundations and Applications, (Chichester, England: 

 John Wiley & Sons, 1990), xxiv. 
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geometry as a triangle, but it is very complex and irregular.”
17

  Fractals function similarly.  A 

fractal curve is not straight (like a line), so it has a dimension greater than one, but since a fractal 

curve does not completely fill the plane it occupies (like a square or circle) the curve has a 

dimension less than two.  Therefore, a fractal curve has a dimension somewhere between one 

and two.
18

  Consider again the simple fractal the Koch curve (See Fig. 1). 

        Fig. 1 shows only a few iterations of the Koch curve.  The construction process can 

theoretically continue to infinity.  As the iterations continue to infinity, however, the perimeter of 

the shape also approaches infinity as the length of each new side approaches zero.  Despite the 

fact that the perimeter length of the shape becomes infinite, the total area the shape encloses 

remains finite.  Since this concept makes no sense in the context of integer dimensions, 

“mathematicians had to redefine the term „dimension‟ so that fractal dimensions could be 

calculated.”
19

     

        Since many simple fractals are constructed by dividing a shape and retaining only some of 

the divided parts, one article suggests that dimension (fractional or integer) can be defined as 

D=[ln(number of pieces retained)]/[ln(number of pieces that the shape was divided into 

originally)]
20

 (See Fig. 5). 

Fig. 5.  Fractional Dimension.
21

 

 

 

                                                 
17 Solomon. 
18 Fractals. 
19 Ibid. 
20 Fractals. 
21 Ibid. 
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Each line (a, b, c, and d) is divided into a specified number of pieces on each iteration, and then a 

specified number of the pieces are retained.  For line (a), each line is divided into two segments, 

and one segment is retained, resulting in D=[ln(1)]/[ln(2)]=0.  Since the retained segment is 

gradually shrinking, the final result as this process is repeated to infinity will be only a point, 

which will have a dimension of 0.  For line (b), each piece is divided into two segments, and both 

are retained, giving a dimension of D=[ln(2)]/[ln(2)]=1.  Since none of the pieces are discarded, 

the line will keep its standard dimension of 1.  For line (c), each line is divided into thirds, and 

only two segments are kept.  The dimension of this figure is D=[ln(2)]/[ln(3)]=.6309, meaning 

that line (c) has a fractional, or fractal, dimension.  For line (d), the line is divided into fifths, and 

three segments are retained, resulting in a dimension of D=[ln(3)]/[ln(5)]=.6826.  Line (d), then, 

also has a fractal dimension.
22

 

        This process can then be applied to “real” fractals, such as the Koch curve.  Each segment 

of the Koch curve is divided into three segments, but since two new segments replace one of the 

original segments, there are actually four pieces retained.  Using the same process, the dimension 

of the Koch curve is D=[ln(4)]/[ln(3)]=1.2619.
23

  The same principle could also be applied to 

fractals which are “three-dimensional,” which will have a dimension greater than two but less 

than three.  This method of determining dimension is commonly called similarity dimension. 

Falconer states that “similarity dimension is meaningful only for a relatively small class of 

strictly self-similar sets.”
24

  Falconer further notes, however, that other methods of determining 

dimension, such as Hausdorff dimension and box-counting dimension, may be defined for any 

set.
25

 

                                                 
22 Fractals. 
23 Ibid. 
24 Falconer, xxiv. 
25 Ibid. 



10 

 

Box-counting dimension 

        Falconer defines the box-counting dimension for a set F as 
log

log
lim dim

0

FN
FB , where 

Nδ (F)=the smallest number of sets of at least diameter δ that can cover F (assuming that the set 

F being considered is both empty and non-bounded).
26

  By mathematically manipulating this 

formula, Falconer determines that Nδ (F) is equivalent to the number of boxes of side length δ 

that intersect F.  This result leads to the most common understanding of box-counting 

dimension:  “To find the box  

     dimension of a plane set F we draw a mesh of squares or boxes of side δ [see Fig. 6] and  

     count the number Nδ (F) that overlap the set for various small δ (hence the name „box- 

     counting‟) . . .  The number of mesh cubes of side δ that intersect a set is an indication of how  

     spread out or irregular the set is when examined at scale δ.  The dimension reflects how  

      rapidly the irregularities develop as δ → 0”.
27

 

Fig. 6.  A random set F with a box-counting grid.
28

 

 

 

 

                                                 
26 Ibid., 42. 
27 Ibid., 43. 
28 Ibid., 40. 
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Musical applications 

Overall dimension (Hsu) 

        According to research by Kenneth and Andreas Hsu, melodies of classical music may also 

have a fractal dimension.  While Kenneth Hsu was studying natural catastrophes, he realized that 

there existed “an inverse log-log linear relation between the frequency (F) and a parameter 

expressing the intensity of the events (M) . . . and the relation can be stated by the simple 

equation: F= DM
c .”

29
  Later, the Hsus realized that this was the relation that had “been called 

fractal by Mandelbrot, where c is a constant of proportionality and D is the fractal dimension.”
30

   

The Hsus then applied this principle to classical music melodies. 

        Recognizing that musical notes alone do not create melodies, but rather the ordered 

succession of the notes, the Hsus determined that the succession of notes that make up a melody 

is fractal if “the incidence frequency (F) of the interval (i) between successive notes in a musical 

composition can be defined by the relation . . .  log F=c-D log i, where c is a constant and D is 

the fractal dimension.”
31

 

          Musicians define the spaces between musical notes as intervals, which can be measured by 

semitones, the smallest intervals in Western music (the distance from one note on the piano to its 

next closest neighbor).  In their research, the Hsus determined the size of the interval between 

each successive note in the piece of music, and then determined the percentage frequency of each 

interval.  The logs of the percentage values were graphed on a log-log linear plot, and the 

formula checked to see if the frequencies of the intervals in the melody had a fractal dimension.  

For this type of analysis, the Hsus combined the percentage frequencies from all of the voices to 

                                                 
29 Kenneth J. Hsu and Andreas J. Hsu,  “Fractal Geometry of Music,” Proceedings of the National Academy of 

Sciences of the United States of America, Vol. 87, no. 3 (1990): 938.  
30 Ibid. 
31 Ibid., 938-9. 
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give an overall dimension, rather than considering the lines separately.  The Hsus analyzed a 

total of six pieces of classical music and found all of the classical melodies to have a fractal 

dimension.   

Melodic line dimension (Madden) 

         In his book Fractals in Music: Introductory Mathematics for Musical Analysis Charles 

Madden proposes a different method of measuring the dimension of a piece of music.  Madden‟s 

method is based on the box-counting method and uses graphs showing the shape of the music, 

created by plotting pitch versus time.
32

  By applying a grid to the graph, the boxes can be 

counted to determine the dimension.  Since this method becomes tedious for a piece of any 

length, Madden determined a formula that sums the difference between the pitches, thus giving a 

count of the boxes that are crossed by the lines in the graph.  Madden points out that the 

problems of accuracy in the box-counting method at small values of δ are non-existent in this 

type of analysis, since the musical examples cannot go beyond the individual note space. He thus 

simplifies the process.  Madden‟s method must be applied to separate lines individually, since 

this is a measure of the dimension of the melodic line. 

Attractors 

Mathematical Definition 

        Dynamical systems are systems whose status will change over time, and the term chaos “is 

usually reserved for dynamical systems whose state can be described with differential equations 

in continuous time or difference equations in discrete time.”
33

  In “Chaos, Fractals, and 

Statistics,”  Sangit Chatterjee states that an accurate and complete description of a dynamical 

                                                 
32 Charles Madden, Fractals in Music: Introductory Mathematics for Musical Analysis, 2nd ed. (Salt Lake City: 

High Art Press, 2007), 143. 
33 Sangit Chatterjee and Mustafa R. Yilmaz, “Chaos, Fractals and Statistics”, Statistical Science, Vol. 7, no. 1 

(1992): 52.  
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system requires the ability to describe the system at a specific point in time as well as describe 

the behavior of the system over a given time interval.
34

  This task is accomplished by examining 

the system in terms of its phase space.  In the phase space of a system, “points in this space 

represent instantaneous descriptions of system status at different points in time.”
35

  The closely 

related concept of phase plane can be used in differential equations to plot solutions to ordinary 

differential equations of the form  
yxf

yxg

dx

dy

,

,
 , which is referred to as the phase plane 

equation.  For this equation, which is dependent on the x and y variables, the xy-plane is called 

the phase plane.
36

 Thus, the phase plane is a two dimensional plane in which the solutions to the 

system of equations can be plotted.  When this concept is extended beyond two dimensions, the 

term phase space is used, regardless of the number of dimensions used in the system.  Chatterjee 

illustrates this by considering a single particle that is in motion in three-dimensional space.  At 

an instantaneous moment in time, Chatterjee states that six coordinates will be required to 

describe the position of the particle:  three coordinates that show the current position of the 

particle, and “three additional momentum coordinates showing the rate of change in the position 

coordinates”.
37

  Thus, while the particle is in motion in standard three-dimensional space, the 

phase space of the single particle is six-dimensional.
38

 

        In his article “Chaos and Ecology:  Is Mother Nature a Strange Attractor?” Alan Hastings 

defines an attractor as “a set of points in phase space . . . that represent a stable set of final 

                                                 
34 Ibid., 53. 
35 Ibid., 53-4. 
36 Kent B. Nagle, Edward B. Saff, and Arthur David Snider, Fundamentals of Differential Equations, 6th ed. 

(Boston: Pearson, 2003), 265. 
37 Chatterjee, 54. 
38 Ibid. 
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dynamics for the system”.
39

 He further explains that the attractor is final in three ways:  “First, 

once the state of the system or model is in this set, it does not leave this set.  Second, all points of 

the set are reached.  Finally, any trajectory starting near enough to the attractor approaches the 

attractor.”
40

  Hastings points out that within a chaotic system there typically exists an attractor to 

which any solution will converge, provided that the solutions are sufficiently close to the 

attractor initially.  He also states that chaotic systems often have strange attractors that can often 

be identified by their “twisted” shapes and can be more accurately identified by their fractional 

dimension. 

        Madden defines three types of attractors:  fixed, periodic, and strange.  According to 

Madden, a fixed attractor is a single point towards which motion tends, such as the center of a 

spiral.  A periodic attractor occurs when motion does not tend towards a single point, but rather 

oscillates through a set of points, like a sine wave.  A strange attractor is defined as a “periodic 

attractor that is smeared out so that the orbits never repeat exactly”.
41

  The Lorenz attractor is an 

example of a strange attractor (See Fig. 7). 

Fig. 7.  Lorenz attractor.
42

 

 

      

                                                 
39Alan Hastings, Carole L. Hom, Stephen Ellner, Peter Turchin, H. and Charles J. Godfray., “Chaos in Ecology: Is 

Mother Nature a Strange Attractor?” Annual Review of Ecology and Systematics, Vol. 24 (1993): 5.  
40 Ibid. 
41 Madden, 6. 
42 Fractals. 
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         Madden further explains the concept of an attractor with an attempt to find the exact value 

of π using the exhaustion method proposed by Archimedes.
43

  He begins by inscribing a square 

inside a circle with diameter 1 (See Fig. 8), and then calculating the perimeter of the inscribed 

square as approximately 2.828. 

Fig. 8.  Circle with inscribed square.
44

 

 

Madden continues by circumscribing the circle with another square (See Fig. 9), the perimeter of 

which is equal to 4.   

Fig. 9.  Circle with inscribed and circumscribed squares.
45

 

 

                                                 
43 Ron Larson, Robert Hostetler, and Bruce H. Edwards, Calculus: Early Transcendental Functions, 4th ed. (Boston: 

Houghton Mifflin, 2007), 297. 
44 Madden, 40. 
45 Ibid. 
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Madden points out that the perimeter of the circle must be somewhere between the perimeters of 

the squares and estimates it at (2.828+4) / 2 ≈3.414.  While this number is not very close to the 

actual decimal approximation of π (3.14159 . . . ), this method allows a closer approximation to 

the actual value of π by continuing to circumscribe and inscribe the circle with polygons whose 

sides are closer to the circle by using polygons with a greater number of sides (See Fig. 10). 

Fig. 10.  Circle with inscribed and circumscribed octagon.
46

 

 

Madden explains that as this process is continued, the perimeters will approach the circle more 

closely, and a limit will be reached when the polygons have “an infinite number of 

infinitesimally small sides, lying an immeasurably small distance from the circle, giving us a 

perimeter infinitely close to the true value of π.”
47

   

         As this process is repeated, the values found for π on each iteration “swing positively and 

negatively from side to side in a smaller and tighter trajectory, and could be said to spiral in on 

the limit.  The center of this convergence (the circle itself) is the attractor.”
48

  Thus, this attractor 

was the point towards which the motion moved as the approximations moved closer and closer to 

π. 

                                                 
46 Ibid. 
47 Ibid., 39-40. 
48 Ibid., 40. 
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Musical application 

        Madden applies this concept to music by creating graphs that are intended to show the 

presence of any attractors in the music.  These graphs, which consist of scatter plots of the notes 

connected by smooth lines, are created by plotting the numerical “values” of the notes on the 

vertical axis against the same values plotted on the horizontal axis, but delayed by one note 

(value (n-1) against value n).
49

  This effectively traces the path that the notes follow throughout 

the piece.  Madden includes several examples of these graphs showing strange attractors in 

music (See Figs. 11 and 12). 

Fig. 11.  Attractor graph: Ian Stewart, chaotic music.
50

 

 

Madden explains that “this random structure is a single orbit that will never repeat and should be 

understood as a strange attractor”.
51

  

 

 

 

 

 

                                                 
49 Ibid., 50 
50 Ibid., 53. 
51 Ibid., 52. 
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Fig. 12.  Attractor graph: Frederic Chopin, Etude Op. 10 No. 1.
52

 

 

Although this plot lies strongly along the diagonal line (showing a strong sense of key), Madden 

states that since the music never repeats, this piece is also an example of a strange attractor.
53

 

Fourier Analysis 

Mathematical Definition 

        Fourier analysis, named for Jean Baptiste Joseph, Baron de Fourier (1768-1830), is used to 

break down a complex curve into a series of simpler curves.  While studying the motions of heat 

waves flowing through objects, Fourier discovered that any periodic wave, regardless of its 

complexity, can be written as a sum of many simple waves.
54

  The sum of simple waves (made 

up of sines and cosines) represents an expansion of the original periodic wave and is called a 

Fourier series.
55

  Once the Fourier series is obtained, the simple waves can be “plugged in, 

solved individually, and then recombined to obtain the solution to the original problem or an 

approximation to it to whatever accuracy is desired or practical.”
56

 Thus, Fourier analysis allows 

                                                 
52 Ibid., 56. 
53 Ibid. 
54 Transnational College of Lex,  Who is Fourier?  A Mathematical Adventure.  trans Alan Gleason.  (Boston: 

Language Research Foundations, 1995), 11. 
55 Eric W. Weisstein, "Fourier Series," MathWorld--A Wolfram Web Resource; internet; accessed 1 October 2009.    
56 Ibid. 
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complex waves, for which there may be either a complex formula, or no known formula, to be 

approximated as a sum of simple waves, which can then be studied individually (See Fig. 13). 

Fig. 13.  Complex waves and their Fourier approximations.
57

 

 

        The general form for a Fourier series is: 
1

0 sincos2
2

1

n

nn nbnaaf .  In this 

equation, the an and bn terms are constants.  In Music: A Mathematical Offering, David J. Benson 

explains how the an and bn terms can be found using the following formulas, which are derived 

from the addition formulas for sine and cosine:
58 0sincos

2

0

dnm ; 

2

0 otherwise     0

,0 if    ,

,0 if  ,2

coscos nm

nm

dnm ; and

2

0
otherwise   0

,0 if  
sinsin

nm
dnm . 

     To find the coefficient am, Benson multiplies f(θ) by cos(mθ) and then integrates the result by 

considering separately each part of the sum of the integral (assuming m>0).   

                                                 
57 Ibid. 
58 David J. Benson, Music: A Mathematical Offering, (New York: Cambridge University Press, 2007), 39. 
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        The first term of the expanded integral, da

2

0

0 mcos
2

1
, will be equal to 0 due to the 

periodic nature of the cosine function from 0 to 2π.  Since m>0, the 

2

0

coscos dnman  

portion of the expanded integral will have only one nonzero term (when m = n >0, the value of  

 

the integral will be equal to π, and an = am).  The third part of the integral, 
2

0

sincos dnmbn , will also be equal to 0, thus giving the result . cos

2

0

madfm     

It follows that, for m >0,

2

0

cos
1

dfmam .  By a similar process, for m >0, 

2

0

sin
1

dfmbm .
59

 

        Benson illustrates with an example of determining Fourier coefficients for the square wave, 

defined by f(θ) = 1 for 0 ≤ θ < π and  f(θ) = -1 for π ≤ θ < 2π (see Fig. 14). 

Fig. 14.  The square wave
60

 

 

                                                 
59 Ibid., 40. 
60 Ibid., 41. 
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         To find the Fourier coefficients for this equation, Benson uses his formulas for am and bm to 

obtain the following result (there are two integrals in each case because the function f(θ) is a 

piecewise function).
61

     

even          0

  odd      
4

11111
      

coscos1
     

sinsin
1

0
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m

mmmm

m
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m
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m
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In a simplified format, the Fourier series for a square wave is ...5sin
5

1
3sin

3

1
sin

4
.  

Benson gives a diagram of the first few terms in this series to show the “square” curve that is 

obtained by this approximation (See Fig. 15). 

 

 

 

 

 

 

 

                                                 
61 Ibid., 42. 



22 

 

Fig. 15.  Square curve approximations.
62

 

 

The overshoot at each turning of the curve is due to the fact that the function is everywhere 

defined but is not continuous.  This “ringing” that occurs at discontinuities is known as the Gibbs 

phenomenon.
63

  Despite this overshoot at points of discontinuity, the approximation comes close 

to duplicating the original curve, and the formulas for the constituent curves are more 

manageable than the original formula.   

Musical Application 

         The final chapter in Madden‟s book gives direction for using Fourier analysis with graphs 

of the musical shape to break down the complex curve dictated by the musical line into the 

constituent simple curves.  Madden‟s method does not include an analysis of the time factor, but 

is strictly one-dimensional, examining the melodic shape of the music with no reference to 

                                                 
62 Ibid., 43. 
63 Weisstein. 
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time.
64

  By creating an inverse transform, the coefficients in the Fourier series can be checked for 

accuracy, since the inverse transform should look similar to the original curve. 

         Madden gives the equation for a waveform as f(t)=A0 + A1cos1ωt + A2cos2ωt + . . . 

B1sin1ωt + B2sin2ωt . . . . = A0 + Σ(Ancosnωt + Bnsinnωt).
65

  The An and Bn terms can be 

determined using the formulas 
1

0

 2
cos

2 T

t

n

T

nt
tf

T
A and 

1

0

 2
sin

2 T

t

n

T

nt
tf

T
B .  In these 

formulas, T=number of samples (number of notes in the piece), f(t)=the value of the curve at a 

specific time t, and n=the harmonic number.  Madden explains this process for the complex wave 

given by the equation ttttf  500  2sin4 300  2sin3 100  2sin5 (See Fig. 16).  

Fig. 16.  Complex wave.
66

 

 

        In order to treat this graph like a graph of a melodic line, Madden superimposes a grid over 

the curve in order to estimate values for f(t) at specific values of t (see Fig. 17). 

 

 

 

 

                                                 
64 Charles Madden, e-mail message to author, September 2, 2009. 
65 Madden, Fractals, 196. 
66 Ibid., 200. 



24 

 

Fig. 17.  Waveform with superimposed grid.
67

 

 

Madden then estimates values for f(t) and applies his formulas to find the An and Bn terms.  After 

finding the An and Bn numbers, Madden uses these numbers to find the Cn terms (See Figs. 18 and 

19).
68

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
67 Ibid., 201. 
68 Note: These tables are reduced in size.  The actual tables would have more columns for An and Bn.  They would 

run through n=10, since the number of samples was 20.  See Appendix A. 
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Fig. 18.  Values for An terms.
69

 

 

Fig. 19.  Values for Bn and Cn terms.
70

 

 

 

The Cn terms are then used to create the spectral analysis (see Fig. 20). 

                                                 
69 Ibid., 202. 
70 Ibid., 203. 
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Fig. 20.  Spectral analysis. 

 

        As expected from the original formula, the amplitudes at 1, 3, and 5 are 5, 3, and 4, 

respectively.  The small amplitudes at 2 and 4 are due to errors in the estimates.
71

  This type of 

analysis, when applied to a melodic line, shows “the amplitues of the sine and cosine waves that 

make up the complicated waveform that is the melodic shape.”
72

 

        The final step in this type of analysis is to create an inverse transform using the equation for 

a waveform and the An and Bn terms found by using the spreadsheets to reconstruct the original 

graph, thus checking the accuracy of the coefficients.  This reconstructed graph has a slight 

negative bias due to inaccuracies in some of the estimates, but the reconstructed graph is nearly 

identical to the original graph (see Fig. 21). 

 

 

 

 

 

 

                                                 
71 Ibid., 203. 
72 Ibid., 204. 
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Fig. 21. Reconstructed Waveform.
73

 

 

        When this analysis process is applied to a melodic line, the process is different only in that 

the samples are taken at each note, thus eliminating the problem of inaccurate estimates.  This 

type of analysis is useful in determining the relative simplicity or complexity (angularity or 

“randomicity”) of the melodic lines.  The amplitudes of the lower harmonics are typically high, 

while in most pieces the middle and upper harmonics generally have smaller amplitudes.  

Madden includes several examples of pieces that have higher amplitudes in the middle and upper 

harmonics (see Figs. 22, 23, 24).   

Fig. 22.  Waveform and Spectrum:  Richard Voss, white music.
74

 

   

                                                 
73 Ibid., 205. 
74 Ibid., 211. 
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Madden comments that this “waveform is very angular; the spectrum contains much energy in 

the higher harmonics . . . [T]he spike at the 33rd harmonic is among the higher frequencies that 

cause the extreme angularity of the waveform.”
75

 

Fig. 23: Waveform and Spectrum:  Iannis Xenakis, Eonta.
76

 

 

Madden states that this waveform is also “very angular, and the frequencies look a little more 

like a uniform distribution, although there are some notable gaps and peaks.”
77

 

 

 

 

 

 

 

 

 

 

                                                 
75 Ibid., 210. 
76 Ibid., 212 
77Ibid., 211. 
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Fig. 24: Spectrum:  Chopin, Etude Op. 10 No. 1.
78

 

 

Madden explains the reason for the single large harmonic that dominates the graph.  This etude is 

“almost entirely a single sinusoid at the 39th harmonic; that is, it is a two-measure unit repeated 

almost verbatim 39 times.”
79

  

Development of Analysis Process 

        When I initially started work on this project, I began working with the Hsus‟ method of 

measuring dimension.  To implement their process, I determined each individual interval in the 

invention and used tally marks to count them.  Quickly recognizing the possibility of error 

allowed by this method, and after noting the use of pitch numbering in Madden, I set up an Excel 

spreadsheet and used Excel‟s capabilities to calculate the intervals, count their occurrences, 

calculate the percentage frequencies, create the graph, and determine the dimension of the graph.  

For each piece I only needed to input the pitch numbers for the notes in the music.  

                                                 
78 Ibid., 219. 
79 Ibid., 219. 
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        I then added Madden‟s method of creating a graph that plots pitch versus time.  Since I had 

already set up the spreadsheets to input pitch, I then added two more columns to measure the 

time value of each note.  After some trial and error, I determined that the simplest way to 

measure time would be to record all the notes in terms of the smallest note value that is used 

consistently throughout the piece, typically a sixteenth note.  In one column I entered the number 

of sixteenth notes that the note was worth (1 for a sixteenth note, 2 for an eighth note, 4 for a 

quarter note, etc.), and in the second column I set up a formula to sum the time values 

cumulatively.  By setting up both columns, I instituted a check system, since at the end of each 

measure, the cumulative number had to be a multiple of the time signature by the base note 

value.  I now had to input the pitch numbers and the time value of each note. 

        Next I added Madden‟s modified version of the box-counting method to measure the 

dimension of the music. For this step, I only needed to add the formulas since I had already input 

all the pitches and all of the intervals were already being measured.  I then added Madden‟s 

graphs to show the presence of attractors.  Since I already had the individual notes in each 

spreadsheet, I simply added this graph to each file. 

        Finally, after following the examples in the book and corresponding by e-mail with the 

author, I was able to add the necessary formulas to my spreadsheets to perform Madden‟s 

technique of Fourier analysis and create a graph showing the spectral distribution of the 

harmonics.  I analyzed each voice individually, since this type of analysis studies the “shape” of 

a melodic line rather than how the two voices work together.  While the spectral analysis is the 

part of the analysis that is meaningful, I created the inverse graphs for each voice in order to 

check my work on the previous spreadsheets—the inverse graphs would not look like the 

originals if I made any mistakes in my formulas or entries. 
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Summary of Findings 

        A brief summary of my findings in each of the four areas (structure, dimension, attractors, 

and harmonic analysis) follows, along with a summary for each individual piece.  For each piece 

I briefly discuss the dimensions—measured using both methods—and then include the following 

graphs: dimension (Hsu), attractor (Madden), spectral analysis (Madden), and reconstructed 

waveforms (Madden).  The graphs of the reconstructed waveforms are included only to 

demonstrate the accuracy of the Fourier coefficients used to create the spectral analysis.  The 

reconstructed graphs are not intended to be carbon copies of the original graphs. These graphs 

are typically slightly smoother and often seem to be moving “forward” at a different rate than the 

original graphs.  The reconstructed graphs are smoother because an exact reconstruction would 

require an infinite number of upper partials.
80

  The reconstructed graphs given here use only a 

finite number of harmonics, which creates a graph sufficiently close to the original for my 

purposes.  The apparent change on the time scale is due to the fact that the time factor is not 

accounted for in the reconstructed graphs.  Thus, when the original music has note values longer 

than one subdivided note, the original graph will appear to be delayed slightly behind the 

reconstructed graph.  However, the basic shape of the graph is very clear and easily demonstrates 

the accuracy of the Fourier coefficients. 

        The concept of creating a scaling (fractal) structure by using contrapuntal devices 

(inversion, augmentation, diminution, retrograde) to transform a musical motive is inherent in 

the structure of all the pieces studied, since each is generated from a single motive.  Since this 

concept is built into the structure of each piece, I have chosen not to include the graphs that show 

the entrances of the motives.   

                                                 
80 Ibid., 222. 
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        I measured the dimension of each piece using both the method proposed by the Hsus, based 

on percentage occurrence of the intervals, and the method proposed by Madden, based on the 

box-counting dimension.  In their article, the Hsus do not include all of the intervals when they 

are calculating the dimensions of the pieces.  Although they create graphs that show the logs of 

the percentage frequencies for all of the pitches, for some unexplained reason, they do not 

include all the interval classes when creating their trendline and calculating their dimension.  

Since they give no reasons for excluding some of the intervals, and I have been unable to 

determine why they excluded some of the intervals, I have chosen to modify their process 

slightly in my own research.  The interval 0 (unison) is excluded in my graphs, like it was in 

their graphs, because these graphs are based on logarithms, and therefore 0 cannot be used.
81

  I 

have also chosen to exclude any intervals that are larger than an octave.  Since intervals above an 

octave are not common in these pieces by Bach, their small percentage occurrence has a 

significant effect on the dimension while the intervals themselves are not an important structural 

element.  For the Two-Part Invention in C major (the only piece included in the Hsus‟ article that 

I also analyzed), these changes to their method caused the dimension of the music to drop 

significantly (from 2.4184 to 1.6012).  Since I have not studied or analyzed any of the other 

pieces included in their article, I do not know whether a significant drop in the dimension would 

always be the result modifying their method in this fashion.   

         Using this method, the dimensions varied from 0.8862 to 1.8209 for the Two-Part 

Inventions, and the average was approximately 1.3925.  For eleven of the Two-Part Inventions, 

the Hsus‟ dimension was higher than Madden‟s.  The Two-Part Inventions in D minor, F major, 

                                                 
81 Madden‟s method also does not include the unison intervals since his formula for box-counting requires summing 

the differences between the pitches, which will not be changed by a 0.  Although these intervals can easily be added 

to the final sum, I have chosen not to add these intervals for two reasons: the unisons are typically not an important 

structural interval, and I wanted to try to keep some consistency in executing the two methods. 



33 

 

A minor, and Bb major had a smaller dimension when measured with this method than with 

Madden‟s.   

        The dimensions varied from 1.1982 to 2.0051 in the Three-Part Inventions, and the average 

dimension was approximately 1.6146.  Using the modified version of the Hsus‟ method, all of 

the dimensions for the Three-Part Inventions were higher than the dimensions measured using 

Madden‟s method.  Overall, the dimensions for the Three-Part Inventions were typically higher 

than those of the Two-Part Inventions as compared to Madden‟s method, which remained 

consistent throughout all the pieces studied.  In the Three-Part Inventions, it consistently appears 

that the motives that are of a scalar nature or have scalar submotives resulted in higher 

dimensions; however, this theory does not hold true in the Two-Part Inventions.     

        Using Madden‟s method, all the dimensions were between 1 and 2 for the Two-Part and 

Three-Part Inventions.  The right hand dimensions averaged to approximately 1.1977, and the 

left hand dimensions averaged to approximately 1.2575.  For both voices combined, the 

dimensions varied from 1.1509 to 1.2488.  For all but three of the Two-Part Inventions (F major, 

F minor, A major), the left hand dimension is greater than that of the right hand, although the 

dimensions are never far apart.   

         In the Three-Part Inventions, the lowest voice dimension is always the largest, although the 

dimensions are always relatively close.  In the C major, E major, F minor, G minor, A major, and 

B minor Three-Part Inventions, the upper voice dimension is greater than the middle voice 

dimension.  In the remaining Three-Part Inventions, the middle voice dimension is greater than 

that of the upper voice.  The upper voice dimensions averaged to approximately 1.1797, the 

middle voice dimensions to approximately 1.1826, and the lowest voice dimensions to 

approximately 1.2240.  The dimensions for all of the voices combined varied from 1.1145 to 
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1.2953.  According to the examples in Madden‟s book, the low dimension is typical of “smooth” 

melodies—melodies that are not highly angular or “random.”  This result is typical for music 

from the Baroque (1600—1750) period. 

        The consistency of the results obtained from using Madden‟s method compared to the 

widespread and somewhat erratic results from the Hsus‟ method, along with the practice of 

excluding some of the intervals, raises questions as to the validity of the Hsus‟ method.  I have 

still chosen to include the graphs and the measured dimensions despite these questions. 

        The study of attractors (strange or otherwise) in this music was somewhat futile.  Due to the 

compositional technique used to create these pieces, the music is bound to repeat at some point 

as the motive is used over and over throughout the piece, meaning that none of these pieces can 

be strange attractors.  However, many of the graphs did have places within the graph that acted 

as a basin of attraction,
82

 indicated by a clustering of notes in a small area.  For many of these 

basins of attraction, although unusual activity or clustering of notes was clear, I was unable to 

determine precisely which note acted as the attractor, so in the individual summaries, I simply 

make a note of the fact that there are basins of attraction without specifying which individual 

note acts as the attractor.  For the notes that I was able to identify, the basins of attraction usually 

occur at the tonic and dominant pitches for the piece.  All the graphs showed correlation along a 

diagonal line, indicating a strong sense of tonality, which is to be expected in music of the time 

period. 

        The Fourier analysis and resulting spectral graphs also proved to be fairly consistent 

throughout the set of pieces, although there were a few with unusual qualities (see Two-Part 

Inventions in E major, F minor, and Bb major and Three-Part Inventions in D minor, Eb major, F 

                                                 
82 A basin of attraction is the set of points, or notes, within which any given point will eventually move toward a 

specific attractor. 
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minor, Bb major, and B minor).  None of the graphs had an even distribution throughout the 

harmonics, which would indicate a highly angular and random curve, although the Three-Part 

Invention in Bb major has a very interesting distribution and comes the closest to having an even 

distribution.  Typically, the graphs begin with several high or moderately high amplitudes, and 

eventually, typically by the fifteenth harmonic, the amplitudes will gradually drop off and 

become stable, and they will remain low and relatively stable throughout the remainder of the 

spectrum.  A few of the graphs have energy in the upper harmonics, indicating a slightly more 

complex sound curve. 

         As expected from the nature of the pieces I chose to analyze, my findings were similar for 

all of the pieces.  Since all the pieces were built on the same compositional technique, all the 

pieces have the same basic features, and thus many of these structural analyses had similar 

results.  The fact that all of the pieces are tonal and that all are built on imitative counterpoint, 

also meant that most of the results would be similar or the same for all the pieces I chose to 

study.   
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Two-Part Invention in C Major, No. 1, BWV 772 (1723) 

Dimension, Madden 

 Right hand:    1.1802 

 Left hand:    1.2086 

Dimension, Hsu 

 Combined dimension:  1.6012 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Right Hand)          

 

Original Graph (Right Hand) 
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        Inverse Transform (Left Hand)          

 

Original Graph (Left Hand) 

 

        The dimensions for the right and left hands are quite close.  The fact that the left hand has a 

slightly larger dimension indicates that the left hand line is probably slightly more angular, 

which is confirmed by looking at the music and considering the character of the left hand line, 

especially at cadential moments when the left hand consistently makes octave jumps. 

        The attractor graph is clearly correlated along the diagonal line, although the left hand 

shows slightly more deviation in its orbits from this center (due to the octave intervals) than the 

right hand.  There are two strong basins of attraction as well as some weaker basins of attraction. 

        The right hand harmonic spectrum is dominated by the first five harmonics, which all have 

approximately the same size amplitudes.  While there is some energy in the upper harmonics, 

there is no significant activity.   
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        The left hand harmonic spectrum is also dominated by the first five harmonics, but 

primarily by the first and third harmonics, which have markedly higher amplitudes than the 

others.  There is no significant energy in the upper harmonics.    
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Two-Part Invention in C Minor, No. 2, BWV 773 (1723) 

Dimension, Madden 

 Right hand:    1.1739 

 Left hand:    1.1802 

Dimension, Hsu 

 Combined dimension:  1.3885 
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Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)         

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand) 

 

Original Graph (Left Hand) 

 

        The dimensions for the right and left hands are again almost identical, only differing by 

approximately 0.0029.  This corresponds to the music, since there are not significantly more 

large or more frequent leaps in one hand than in the other. 

        The right hand harmonic spectrum begins with two high amplitude harmonics, which are 

followed by a slight increase in amplitude for harmonics nine through sixteen, after which there 

is no significant activity in the higher harmonics.   

         The left hand harmonic spectrum begins with a harmonic of medium amplitude which is 

immediately followed by a second harmonic with a higher amplitude.  There is some activity 

through harmonic nineteen, with low amplitudes at harmonics three and twelve, and no 

significant activity in the upper harmonics.   
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Two-Part Invention in D Major, No. 3, BWV 774 (1723) 

Dimension, Madden 

 Right hand:    1.2014 

 Left hand:    1.2080 

Dimension, Hsu 

 Combined dimension:  1.3489 
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Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)      

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand)            

 

Original Graph (Left Hand) 

 

        The attractor graph is again correlated along the diagonal line, although there are some 

interesting orbital deviations from the diagonal line in both hands.  This is caused by the motivic 

use of large jumps in both hands, specifically the use of octave leaps—ten octave leaps in the 

right hand and seventeen octave leaps in the right hand.  There are two strong basins of attraction 

within this graph.   

        The right hand harmonic spectrum is dominated by the first five harmonics, which have 

varying amplitudes, but are still significantly higher than the other harmonics.  There is no 

significant activity in the upper harmonics. 

        The left hand harmonic spectrum is slightly unusual in that it begins with two high 

amplitude harmonics that are followed by a very small third harmonic, after which harmonics 

four through seven begin at a medium amplitude and then gradually decrease. 



46 

 

Two-Part Invention in D Minor, No. 4, BWV 775 (1723) 

Dimension, Madden 

 Right hand:    1.1979 

 Left hand:    1.2437 

Dimension, Hsu 

 Combined dimension:  1.1174 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Right Hand)          

 

Original Graph (Right Hand) 
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        Inverse Transform (Left Hand)          

 

Original Graph (Left Hand) 

 

        The dimensions for each voice are very close.  The left hand dimension is only slightly 

larger, which is due to the slightly more angular nature of the left hand line.  It is interesting to 

note that for this piece the Hsu dimension drops significantly below the Madden dimension.  The 

reasons for this sudden drop are unclear. 

        The attractor graph does not have any particularly striking behavior.  It is worth noting that 

the left hand seems to be somewhat less strictly correlated than the right hand, since it has looser 

orbits and the orbits are less consistent.  Also, the right hand appears to have at least one strong 

basin of attraction, while the left hand seems to have weak basins of attraction at best. 

        The harmonic spectrum for the right hand has highest amplitudes in the first five harmonics, 

with another high amplitude at the eighth harmonic and no other significant activity in the higher 

harmonics.   
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         The harmonic spectrum for the left hand begins with two high amplitude harmonics, which 

are followed by two harmonics of smaller amplitude.  There is an interesting spike at the fifth 

harmonic, after which the spectrum gradually settles down.  There is slightly more activity in the 

upper harmonics than is typical; the amplitudes do not completely settle down until about the 

thirty-third harmonic.  
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Two-Part Invention in Eb Major, No. 5, BWV 776 (1723) 

Dimension, Madden 

 Right hand:    1.1686 

 Left hand:    1.1758 

Dimension, Hsu 

 Combined dimension:  1.8181 
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Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)         

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand) 

 

Original Graph (Left Hand) 

 

        The Hsu dimension for this piece is relatively high, especially when compared to Madden‟s 

numbers.   

        The attractor shows a rather interesting orbit, which is caused by a relatively high number of 

larger intervals (m7, M7, P8).  There are several strong basins of attraction spread throughout the 

graph. 

        The harmonic spectrum of the right hand begins with a high amplitude that is followed by a 

single low amplitude harmonic and then a small group of high amplitude harmonics, after which 

the harmonics gradually stabilize except for small spikes at about the twenty-first and sixty-fifth 

harmonics.  There is no significant energy in the upper harmonics until the last few harmonics, 

where there is a small increase in amplitude. 
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        The harmonic spectrum of the left hand begins with a rather low first harmonic after which 

the amplitudes increase through the fourth harmonic, which has a rather high amplitude.  After 

the fourth harmonic, the amplitudes gradually drop off and stabilize, although there is more 

energy than usual throughout the upper harmonics, with small spikes at the 128th and 142nd 

harmonic, and a small group of harmonics with slightly increased amplitude at the end of the 

spectrum.  
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Two-Part Invention in E Major, No. 6, BWV 777 (1723) 

Dimension, Madden 

 Right hand:    1.1811 

 Left hand:    1.2371 

Dimension, Hsu 

 Combined dimension:  1.5006 
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Spectral Analysis 
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Inverse Transforms 
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Inverse Transform (Left Hand)            

 

Original Graph (Left Hand) 

 

        The attractor graph shows a strong correlation along the diagonal line, but along with the 

wide orbital pattern (due to the occurrence of large intervals, both octaves and intervals larger 

than an octave), there also appears to be an unusual distribution along the diagonal line.  There 

appear to be several different centers (basins) of attraction of varying strength along the diagonal 

line, since the notes tend to cluster in five relatively distinct areas, two of which are strong, two 

of which are weaker, and one of which (at the lowest end of the left hand) is the weakest, having 

only a few notes clustering around it.  The piece as a whole does not represent a strange attractor, 

since parts of it repeat, but there are definite indications of attractors within the music. 

         The harmonic spectrum of the right hand is somewhat unusual with no strong dominating 

harmonics after the first harmonic, which has a high amplitude.  However, the amplitudes do not 

completely settle down until relatively late, at about the seventy-fifth harmonic. 
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        The harmonic spectrum of the left hand has even more energy in the upper harmonics.  

Although there are no significant spikes in amplitude after the first five harmonics, the energy 

continues all through the upper harmonics. 
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Two-Part Invention in E Minor, No. 7, BWV 778 (1723) 

Dimension, Madden 

 Right hand:    1.1928 

 Left hand:    1.2290 

Dimension, Hsu 

 Combined dimension:  1.4426 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Right Hand)          

 

Original Graph (Right Hand) 
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        Inverse Transform (Left Hand)          

 

Original Graph (Left Hand) 

 

         The left and right hand dimensions are close.  The slightly larger left hand dimension is due 

to the number of octave intervals in the left hand line (13) as well as the five intervals in the left 

hand line that are larger than an octave. 

        The attractor plot does not show any unusual behavior.  The wide orbits in both hands are 

due to the occurrence of large intervals.  There is one strong and one weak basin of attraction in 

the right hand, and a weak basin of attraction in the left hand. 

        The harmonic spectrum of the right hand has high amplitude through the first ten 

harmonics, after which the amplitudes gradually drop off.  Although there are a few more slight 

rises in amplitude (at harmonics 14, 30, 58, and 112), there is not a significant amount of energy 

in the higher amplitudes. 
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        The harmonic spectrum of the left hand begins with a mid-amplitude harmonic followed by 

high amplitude harmonics through the fifth harmonic, after which the amplitudes gradually drop 

off except for a spike at the ninth harmonic.  Although the amplitudes drop after the ninth 

harmonic, there is still some amount of energy in the upper harmonics, but without any 

significant increase in the amplitudes. 
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Two-Part Invention in F Major, No. 8, BWV 779 (1723) 

Dimension, Madden 

 Right hand:    1.2467 

 Left hand:    1.2373 

Dimension, Hsu 

 Combined dimension:  0.9277 
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Spectral Analysis 

Right Hand

0

1

2

3

4

5

6

7

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

1
3
0

1
3
3

1
3
6

1
3
9

1
4
2

1
4
5

1
4
8

 

Left Hand

0

1

2

3

4

5

6

7

1 3 5 7 9
1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

1
1
1

1
1
3

1
1
5

1
1
7

1
1
9

1
2
1

1
2
3

1
2
5

1
2
7

1
2
9

1
3
1

1
3
3

1
3
5

1
3
7

1
3
9

1
4
1

1
4
3

1
4
5

1
4
7

1
4
9

1
5
1

 

Inverse Transforms 

 

Inverse Transform (Right Hand)         

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand) 

 

Original Graph (Left Hand) 

 

        The two dimensions are almost identical for both hands in this invention. 

        While the attractor graph is once again correlated along the diagonal line, there are some 

unusual patterns in this graph due to the Alberti-like figure used throughout the piece, causing 

the orbits to rock back and forth in straight lines rather than in circular orbits.  This graph also 

shows two distinctly strong basins of attraction along the diagonal line and several other 

attractors of varying strengths. 

        The two harmonic spectrums look very similar for this invention.  Both begin with high 

amplitude harmonics, and the energy in the harmonics gradually drops off until about the 

twentieth harmonic.  Both also have an interesting, although rather small, spike close to the end 

of the spectrum. 
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Two-Part Invention in F Minor, No. 9, BWV 780 (1723) 

Dimension, Madden 

 Right hand:    1.1510 

 Left hand:    1.1509 

Dimension, Hsu 

 Combined dimension:  1.8209 

-1

-0.5

0

0.5

1

1.5

2

1 10 100

 

 

Attractor Plot 

10

20

30

40

50

60

70

10 20 30 40 50 60 70

RH

LH

 



66 

 

Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)      

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand)            

 

Original Graph (Left Hand) 

 

        The two measurements for dimension are remarkably close. 

        The attractor graph shows an interesting orbital pattern in that most of the wider orbits are 

on the right side of the diagonal line, as only two of the larger orbits are on the left side of the 

diagonal.  This is due to the fact that almost all of the larger intervals are descending.  Most of 

the notes are spread evenly along the diagonal line, although there appears to be one weak basin 

of attraction in the right hand. 

        The harmonic spectrum of the right hand has an interesting pattern.  While there are no 

unusually high amplitude harmonics, the amplitudes remain fairly high as far as the thirtieth 

harmonic, after which they do settle down, and there is no more significant activity. 

        The harmonic spectrum of the left hand has a similar pattern, although there are two high 

amplitudes at the first and third harmonics, and two extremely low amplitudes at the eleventh 
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and twelfth harmonics.  The amplitudes appear to settle down after this unusual behavior until a 

moderate spike in amplitude around the thirtieth harmonic, after which there is no more 

significant activity. 
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Two-Part Invention in G Major, No. 10, BWV 781 (1723) 

Dimension, Madden 

 Right hand:    1.2312 

 Left hand:    1.2354 

Dimension, Hsu 

 Combined dimension:  1.5554 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Right Hand)          

 

Original Graph (Right Hand) 



71 

 

 

        Inverse Transform (Left Hand)          

 

Original Graph (Left Hand) 

 

        The attractor graph looks very similar for both hands with only a suggestion of a couple of 

weak attractors within the graph.  There is an interesting break between the left and right hand 

lines in the attractor graph, indicating that the ranges of the voices overlap very little. 

        The harmonic spectrum of the right hand begins with a low amplitude, which is followed by 

a gradual overall growth in amplitude over the next few harmonics ending with a high amplitude 

at the fifth harmonic.  After that the amplitudes settle down, although there is some amount of 

energy in the upper harmonics. 

        The harmonic spectrum of the left hand begins with a fairly high amplitude harmonic, 

which is followed by two harmonics of even higher amplitude.  After the third harmonic, the 

amplitudes gradually drop off, although some energy remains through the upper harmonics. 
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Two-Part Invention in G Minor, No. 11, BWV 782 (1723) 

Dimension, Madden 

 Right hand:    1.1635 

 Left hand:    1.1828 

Dimension, Hsu 

 Combined dimension:  1.4879 
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Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)         

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand) 

 

Original Graph (Left Hand) 

 

         The slight difference in the dimensions is due to the occurrence of a few more large 

intervals in the left hand line. 

        The attractor graph shows an interesting break between the right hand and left hand lines, 

seeming to separate the two lines slightly in terms of keyboard geography.  The wide orbits are 

due to the large intervals.  There is one strong basin of attraction in each of the right hand and 

left hand lines. 

        The harmonic spectrum of the right hand is dominated by the first four harmonics, all of 

which have high amplitudes.  After the fourth harmonic, the amplitudes generally decline until a 

suddenly high amplitude at the eleventh harmonic that is followed by a general decline, although 

there are a few more slight increases in amplitude.  After each increase in amplitude, the 

amplitudes decline to a normal level again. 
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          The harmonic spectrum for the left hand begins with two average-height harmonics, which 

are followed by a very high amplitude third harmonic.  After the third harmonic there is an 

interesting pattern of randomly alternating high and low amplitude harmonics that gradually drop 

off to a normal level at about the thirty-fifth harmonic, after which there is no more significant 

activity. 
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Two-Part Invention in A Major No. 12, BWV 783 (1723) 

Dimension, Madden 

 Right hand:    1.1993 

 Left hand:    1.1865 

Dimension, Hsu 

 Combined dimension:  1.6404 
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Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)      

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand)            

 

Original Graph (Left Hand) 

 

        This attractor plot, in contrast to some of the other plots, shows a fairly wide interval of 

overlap between the left and right hands.  The correlation along the diagonal line, while clear, is 

still somewhat weak, especially at the lower end of the left hand spectrum where the notes are 

not as tightly wound around the diagonal line. Although there are some indications of basins of 

attraction along the diagonal line, they are weak and unclear, since most of the notes are spread 

evenly throughout the graph. 

         The harmonic spectrum for the right hand has no significantly high amplitude harmonics.  

The first ten harmonics all have medium range amplitudes that vary slightly in height.  After the 

tenth harmonic, the amplitudes seem to stabilize until a slight rise in amplitude around the sixty-

seventh harmonic, after which the harmonics again drop off and stabilize with no activity in the 

upper harmonics. 
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         The harmonic spectrum for the left hand has a high amplitude at the second harmonic, 

which is surrounded by harmonics with amplitudes in the medium range.  Although there is a 

general (although slow) decrease in the amplitudes of the harmonics, the amplitudes do not really 

drop off and stabilize after about the fifty-fifth harmonic. 
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Two-Part Invention in A Minor, No. 13, BWV 784 (1723) 

Dimension, Madden 

 Right hand:    1.2488 

 Left hand:    1.2734 

Dimension, Hsu 

 Combined dimension:  0.8862 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Right Hand)          

 

Original Graph (Right Hand) 
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        Inverse Transform (Left Hand)          

 

Original Graph (Left Hand) 

 

        The Hsu dimension is abnormally low for this invention.  I have been unable to determine 

the cause of this low dimension. 

        The attractor graph has an interesting orbital pattern due to the alternating note figuration 

used motivically throughout the piece, causing some of the orbits to rock back and forth linearly 

instead of circularly.  The left hand has some wider orbits due to the larger intervals that occur in 

the left hand line. 

        The right hand harmonic spectrum begins with three high amplitude harmonics, after which 

there is a low amplitude harmonic.  There follows a high amplitude spike at the fifth harmonic, 

after which the amplitudes gradually drop off.  Although there are no significantly high 

amplitudes in the higher harmonics, there is more energy in the higher harmonics than has been 

typical, indicating a more complex melodic line. 
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        The left hand harmonic spectrum begins with a high amplitude harmonic, which is followed 

by a low amplitude at the second harmonic, and another high amplitude at the third harmonic.  

After the third harmonic the amplitudes gradually drop off, although some energy remains 

throughout all of the upper harmonics. 
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Two-Part Invention in Bb Major, No. 14, BWV 785 (1723) 

Dimension, Madden 

 Right hand:    1.2255 

 Left hand:    1.2267 

Dimension, Hsu 

 Combined dimension:  1.1170 
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Spectral Analysis 
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Inverse Transforms 

 

Inverse Transform (Right Hand)         

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand) 

 

Original Graph (Left Hand) 

 

        The dimensions of the two lines are almost equal.  Although the left hand has more octave 

intervals than the right hand, the right hand has enough large intervals (m7 and M7) to make the 

dimensions almost equal. 

        The attractor graph has an interesting orbital shape with strongly defined basins of 

attraction. 

        The right hand harmonic spectrum begins with two unusually low amplitude harmonics, 

which is followed by a sudden jump in amplitude at the third harmonic.  The amplitude drops at 

the fourth harmonic, and after rising again at the fifth harmonic, the amplitudes gradually drop 

off and stabilize, although there are several more unusually low amplitudes spread throughout 

the spectrum. 
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     The left hand harmonic spectrum has medium-high amplitudes at the first and third harmonic, 

which alternate with high amplitudes at the second and fourth harmonics.  The erratic alternation 

of high and low amplitudes continue (although the amplitudes are decreasing overall) through 

the thirtieth harmonic, after which the harmonics gradually drop and stabilize. 
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Two-Part Invention in B Minor, No. 15, BWV 786 (1723) 

Dimension, Madden 

 Right hand:    1.2033 

 Left hand:    1.2174 

Dimension, Hsu 

 Combined dimension:  1.2342 
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Spectral Analysis 

Right Hand
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Inverse Transforms 

 

Inverse Transform (Right Hand)      

 

Original Graph (Right Hand) 
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Inverse Transform (Left Hand)            

 

 

Original Graph (Left Hand) 

 

        The attractor graph has three strong basins of attraction.  While both lines show large 

intervals in their orbits, the left hand intervals are typically larger than the right hand, thus 

making the right hand spiral tighter around the center. 

        The harmonic spectrum of the right hand begins with a medium height amplitude at the first 

harmonic, which is followed by a high amplitude at the second harmonic.  The amplitude drops 

at the third harmonic and drops to an extremely low amplitude at the fourth harmonic, after 

which the amplitudes rise again to a medium height, and then gradually drop off and stabilize, 

although there continue to be more low amplitudes throughout the upper harmonics.  There is 

also an interesting, although slight, rise in the last four harmonics. 

         The harmonic spectrum of the left hand begins with two high amplitude harmonics that are 

followed by a drop at the third harmonic, a rise at the fourth and fifth harmonics, and then 
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another drop at the sixth harmonic.  After this alternation of high and low amplitudes, the 

amplitude rises yet again at the seventh harmonic, after which it gradually drops off and 

stabilizes.  There is little energy in the upper harmonics except for a low spike at about the forty-

seventh harmonic. 
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Three-Part Invention in C Major, No. 1, BWV 787 (1723) 

Dimension, Madden 

 Upper Voice:    1.1539 

 Middle Voice:   1.1333 

 Lower Voice:    1.1776 

Dimension, Hsu 

 Combined dimension:  2.0051 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The Hsu dimension for this piece is abnormally high.  While this dimension is still 

fractional, it falls far outside the expected range.  This appears to be due to the scalar nature of 

the motive that is used as the basis for this piece. 

        The attractor graph has the typical correlation along the diagonal line, although the orbits 

are looser in the lowest voice because of the larger intervals that occur in the lowest voice.  

There are a few weak basins of attraction, but there are no strong basins of attraction within this 

graph. 

        The harmonic spectrum of the lowest voice has a slightly unusual distribution in that the 

amplitudes do not begin to stabilize until about the thirteenth harmonic, immediately after a very 

small amplitude at the twelfth harmonic. 
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Three-Part Invention in C Minor, No. 2, BWV 788 (1723) 

Dimension, Madden 

 Upper Voice:    1.1956 

 Middle Voice:   1.2121 

 Lower Voice:    1.2145 

Dimension, Hsu 

 Combined dimension:  1.3159 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 10 100

 

 

Attractor Plot 

10

20

30

40

50

60

70

10 20 30 40 50 60 70

Upper
voice

Middle
voice

Lowest
voice



97 

 

Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

         The attractor graph shows the typical correlation along the diagonal line.  The few wide 

orbits in the lowest voice are due to some unusually large intervals in the lowest voice.  There 

are four strong basins of attraction within this graph: one in the lowest voice, one in the middle 

voice, and two in the upper voice. 

        The harmonic spectrum of the lowest voice begins with three high amplitudes that are 

followed by three alternating low and high amplitudes, after which the amplitudes gradually drop 

off and stabilize. 
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Three-Part Invention in D Major, No. 3, BWV 789 (1723) 

Dimension, Madden 

 Upper Voice:    1.1782 

 Middle Voice:   1.1977 

 Lower Voice:    1.1994 

Dimension, Hsu 

 Combined dimension:  1.4041 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The attractor graph has a fairly even distribution throughout all the voices, with the large 

intervals that create the wide orbits evenly spread throughout all the voices.  There are four 

moderately strong basins of attraction in this graph: one in the lowest voice, one in the middle 

voice, one in both the middle voice and the upper voice, and one in the upper voice. 

        The harmonic spectrums for all three voices have a similar distribution.  The amplitudes in 

all three graphs do not stabilize and drop off until about the fiftieth harmonic. This is relatively 

late for the energy to finally drop.  The middle voice spectrum has two high amplitude 

harmonics, but the upper and lowest voice spectrums do not have any outstandingly high 

amplitude harmonics. 
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Three-Part Invention in D Minor, No. 4, BWV 790 (1723) 

Dimension, Madden 

 Upper Voice:    1.1894 

 Middle Voice:   1.2043 

 Lower Voice:    1.2416 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The attractor graph shows an even distribution of the orbits throughout all the voices except 

for a few wide orbits in the lowest voice.  There is one strong basin of attraction in the lowest 

voice, and there are a few weak basins of attraction in the upper and middle voices. 

        All three of the harmonic spectrums for this piece have an unusual amount of energy 

through all of the upper harmonics.  The upper and lowest voice spectrums do not have any 

unusually high amplitudes, but the spectrum for the middle voice has two high amplitudes.  The 

harmonic spectrum of the lowest voice, while it does not have any extremely high amplitudes, 

has a high amount of energy throughout the entire spectrum.  
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Three-Part Invention in Eb Major, No. 5, BWV 791 (1723) 

Dimension, Madden 

 Upper Voice:    1.1145 

 Middle Voice:   1.1211 

 Lower Voice:    1.2953 

Dimension, Hsu 

 Combined dimension:  1.5036 

-0.5

0

0.5

1

1.5

2

1 10 100

 

 

Attractor Plot 

10

20

30

40

50

60

70

10 20 30 40 50 60 70

Upper
voice

Middle
voice

Lowest
voice



109 

 

Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The attractor graph has an unusual appearance, especially in the lower voice.  In the lowest 

voice, almost all of the intervals are ascending intervals, with only a few exceptions that are 

small descending intervals.  There are two strong basins of attraction in the middle voice and one 

moderately strong basin of attraction in the upper voice, and there are no clear basins of 

attraction within the lowest voice. 

         The upper and middle voice harmonic spectrums begin two and one high amplitude 

harmonics, respectively.  After these high amplitude harmonics, the harmonics gradually drop 

off and stabilize, and there is no significant activity in the upper harmonics. 

        The lowest voice harmonic spectrum begins with three low amplitude harmonics, after 

which the harmonic fluctuate between medium and high amplitudes through the eleventh 

harmonic, with a spike at the seventh harmonic.  The amplitudes then appear to drop off and 
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stabilize until a sudden spike in the harmonic amplitudes at about the thirty-seventh harmonic, 

which is followed by a low amplitude at the thirty-eighth harmonic and another high amplitude 

harmonic at the thirty-ninth harmonic.  After this sudden activity, the amplitudes gradually drop 

off and stabilize with no more activity in the upper harmonics. 
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Three-Part Invention in E Major, No. 6, BWV 792 (1723) 

Dimension, Madden 

 Upper Voice:    1.1651 

 Middle Voice:   1.1571 

 Lower Voice:    1.1982 

Dimension, Hsu 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The Hsu dimension on this piece is once again very high, apparently due to the scalar nature 

of the motive. 

        The attractor graph does not have any unusual characteristics except that the ranges of the 

voices overlap more than is typical in most of the pieces.  There is one strong basin of attraction 

in the upper voice and the middle voice.  Although there are a few places where the notes seem 

to form small clusters, there are no strong basins of attraction in the lowest voice. 

        The harmonic spectrums for this piece have no unusual distributions.  The middle and 

lowest voice spectrums each have one high amplitude, after which the harmonics gradually drop 

off.  The upper voice spectrum does not have any unusually high amplitudes, and it also drops 

off and stabilizes relatively early in the spectrum. 
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Three-Part Invention in E Minor, No. 7, BWV 793 (1723) 

Dimension, Madden 

 Upper Voice:    1.1720 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The attractor graph does not demonstrate any unusual behavior, although there are more 

wide orbits caused by large intervals in the lowest and middle voices than in the upper voice.  

There is a strong basin of attraction in the lowest voice, and there are two weak basins of 

attraction shared by the upper and middle voices. 

        There is nothing unusual in the harmonic spectrums except for a slight increase in amplitude 

at about the sixty-first harmonic of the lowest voice. 
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Three-Part Invention in F Major, No. 8, BWV 794 (1723) 

Dimension, Madden 

 Upper Voice:    1.1923 
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 Lower Voice:    1.2328 

Dimension, Hsu 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The Hsu dimension for this piece is slightly high.  Although the motive for this piece is not 

truly scalar in nature, it contains some use of scales, which is the likely cause of the high 

dimension. 

        The wide orbits in the attractor graph show that the larger intervals are primarily in the 

lowest voice.  There are several strong basins of attraction spread throughout the graph. 

        The harmonic spectrum of the upper voice has no unusual characteristics.  The middle and 

lowest voices both have fluctuating high and low amplitudes in the beginning harmonics that are 

followed by extremely low amplitudes, after which the harmonics appear to stabilize slightly, 

although energy continues throughout the upper harmonics in both voices.  The low voice has a 

slight but significant increase in energy at the end of its harmonic spectrum. 
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Three-Part Invention in F Minor, No. 9, BWV 795 (1723) 

Dimension, Madden 

 Upper Voice:    1.1669 
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 Lower Voice:    1.2099 

Dimension, Hsu 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The Hsu dimension for this piece is unusually high, probably due to the scalar tendencies of 

the motive.  Although the motive is interrupted by rests, the notes are still scalar in nature. 

        The attractor graph shows a relatively even distribution throughout the range of all the 

voices, and although there are more large intervals in the lowest voice, the wide orbits in the 

middle and upper voices show the presence of large intervals within these voices.  The notes 

seem to cluster fairly evenly all along the diagonal line, disguising the presence of any strange 

attractors if there are any present. 

        The harmonic spectrum of the upper voice does not have any remarkably high amplitudes.  

However, the amplitudes begin at a medium height and do not really drop off until about the 

thirty-fifth harmonic, after which the amplitudes drop off and become fairly stable, although 

there are a few slight increases in energy in the upper harmonics. 
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        The harmonic spectrum of the middle voice also has no high amplitudes, and the amplitudes 

do not drop off until about the twenty-third harmonic.  Although the upper harmonics for the 

middle voice have less energy than that of the upper voice, there is still a small amount of energy 

throughout the upper harmonics. 

        The harmonic spectrum of the lowest voice begins with four high amplitude harmonics, 

after which the amplitudes drop to a medium height, and after a spike at about the twenty-fourth 

harmonic, the amplitudes gradually stabilize somewhat.  There is a significant amount of energy 

through about the seventy-seventh harmonic, after which the amplitudes drop slightly for the 

remainder of the spectrum. 
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Three-Part Invention in G Major, No. 10, BWV 796 (1723) 

Dimension, Madden 

 Upper Voice:    1.1606 

 Middle Voice:   1.1785 

 Lower Voice:    1.1864 

Dimension, Hsu 

 Combined dimension:  1.8623 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        This three-part invention also has a motive of a predominantly scalar nature, which accounts 

for the unusually high dimension computed by the Hsus‟ method. 

         The attractor graph shows a predominance of descending intervals (large orbits to the right 

side of the diagonal line), although there are a few large ascending intervals.   There is a strong 

basin of attraction shared by the lowest and middle voices, and a strong basin of attraction in 

each of the middle and upper voices.   

        The harmonic spectrum of the upper voice does not have any unusually high amplitudes; 

instead, there is an unusually high number of extremely low amplitudes scattered throughout the 

spectrum.  The amplitudes drop off at about the twentieth harmonic and remain stable except for 

very small spikes at about the forty-fourth and seventy-fifth harmonic. 
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        The harmonic spectrum of the middle voice has an unusually high amplitude at the second 

harmonic, after which the harmonics gradually stabilize with no more significant activity after 

the seventeenth harmonic. 

        The harmonic spectrum of the lowest voice begins with four high amplitude harmonics, 

after which the amplitudes gradually stabilize.  There is no significant activity in the upper 

harmonics. 
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Three-Part Invention in G Minor, No. 11, BWV 797 (1723) 

Dimension, Madden 

 Upper Voice:    1.2433 

 Middle Voice:   1.2394 

 Lower Voice:    1.2610 

Dimension, Hsu 

 Combined dimension:  1.2761 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The attractor graph for this plot shows a somewhat erratic orbit, especially in the lowest 

voice and the highest end of the upper voice range.  There are several strong basins of attraction 

spread throughout the graph. 

        The harmonic spectrum of the lowest voice is slightly unusual, with high amplitudes at the 

second and third harmonic, and with a significant amount of energy remaining through the thirty-

first harmonic.  After this point, the harmonics drop off and become stable until the final 

harmonic, which has a small spike.     
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Three-Part Invention in A Major, No. 12, BWV 798 (1723) 

Dimension, Madden 

 Upper Voice:    1.1742 

 Middle Voice:   1.1619 

 Lower Voice:    1.2612 

Dimension, Hsu 

 Combined dimension:  1.3371 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        This three-part invention makes use of an Alberti-like figure, which creates the unusual 

orbital pattern.  This figure is clearly used the most frequently in the lowest voice, with only a 

few occurrences in the middle and upper voices.  However, when it does occur in the upper 

voices, it seems to indicate a point of attraction since the surrounding notes seem to cluster in 

that area.  There is one more strong basin of attraction shared by the upper and middle voices 

that is not in the midst of the Alberti orbits. 

        The harmonic spectrum for the middle voice is slightly unusual in that it begins with two 

harmonics that are approximately the same height, differing only by 0.1451, after which the 

amplitudes immediately drop off and stabilize quickly with no energy in the upper harmonics. 

        The harmonic spectrum of the lowest voice is also rather unusual.  It also begins with a high 

amplitude harmonic (the second harmonic), and the amplitudes immediately drop off and 
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stabilize, but at the end of the harmonic spectrum there is a significantly interesting increase in 

energy. 
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Three-Part Invention in Ab Major, No. 13, BWV 799 (1723) 

Dimension, Madden 

 Upper Voice:    1.1521 

 Middle Voice:   1.1896 

 Lower Voice:    1.2247 

Dimension, Hsu 

 Combined dimension:  1.9775 

-1

-0.5

0

0.5

1

1.5

2

1 10 100

 

 

Attractor Plot 

10

20

30

40

50

60

70

10 20 30 40 50 60 70

Upper
voice

Middle
voice

Lowest
voice



145 

 

Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 



147 

 

 

Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

       The motive of this three-part invention is scalar throughout, which explains the high 

dimension measured by the Hsu method.  

       The attractor graph shows an interesting overlap in the ranges of the voices, but no other 

unusual behavior.  There are multiple basins of attraction spread throughout the system. 
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Three-Part Invention in Bb Major, No. 14, BWV 800 (1723) 

Dimension, Madden 

 Upper Voice:    1.2134 

 Middle Voice:   1.2150 

 Lower Voice:    1.2257 

Dimension, Hsu 

 Combined dimension:  1.6551 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The high dimension measured by the Hsu method is due to the fact that while the motive for 

this three-part invention is not completely scalar, it has scalar sections. 

        The attractor graph again shows a predominance of descending large intervals, with only a 

few exceptions.  The lowest voice is slightly more erratic than the other two voices, with more 

deviation from the smooth orbits, but no highly unusual behavior.  There appears to be one basin 

of attraction within each voice, but due to the thick and relatively even clustering of notes all 

along the diagonal lines, these basins of attraction are not strong or striking. 

        All three harmonic spectrums for this three-part invention exhibit highly unusual amounts 

of energy throughout the upper harmonics, indicating a more complex sound curve.  Noting the 

scale of the amplitudes, these are all relatively small amplitudes, but the amplitudes stay high 

throughout the spectrum rather than stabilizing.  Although none of the spectrums ever truly 

stabilize or drop off, the distribution throughout the spectrum is not completely even, so this is 
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not an indication of an angular or random line, just a more complex sound curve than has been 

seen up to this point. 
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Three-Part Invention in B Minor, No. 15, BWV 801 (1723) 

Dimension, Madden 

 Upper Voice:    1.2245 

 Middle Voice:   1.2017 

 Lower Voice:    1.2314 

Dimension, Hsu 

 Combined dimension:  1.3636 
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Spectral Analysis 
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Inverse Transforms 

     

Inverse Transform (Upper Voice)          

 

Original Graph (Upper Voice) 

 

        Inverse Transform (Middle Voice)          

 

Original Graph (Middle Voice) 
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Inverse Transform (Lowest Voice) 

 

Original Graph (Lowest Voice) 

 

        The attractor graph clearly shows the predominant role of the upper and lowest voices in 

this three-part invention.  It is also interesting to note that despite the subordinate role of the 

middle voice, the dimension of the middle voice is not significantly different from the other 

dimensions.  Aside from this, the attractor graph does not show any unusual behavior except for 

a few erratic orbits at the top and bottom of the spectrum.  There are multiple strong basins of 

attraction spread throughout the graph. 

        The harmonic spectrum for the upper voice begins with a fairly normal sequence of 

amplitudes, although the overall amplitudes are a bit higher than normal.  The amplitudes drop 

off and appear to stabilize after the twentieth harmonic, but there is a significant increase in 

amplitudes from about the eighty-sixth harmonic to the one hundredth harmonic, with no other 

significant amounts of energy in the rest of the upper harmonics. 
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        The harmonic spectrum of the middle voice has a similar structure beginning with five high 

amplitude harmonics, after which the amplitudes stabilize until a slight but significant increase in 

amplitude from the thirty-eighth harmonic through the forty-fifth harmonic.  Besides this slight 

increase there is no other activity in the upper harmonics. 

        The lowest voice spectrum has a similar pattern.  The spectrum begins with several high 

amplitude harmonics, which stabilize at about the twenty-fifth harmonic.  There is an increase in 

amplitude from the seventy-fifth through the seventy-eighth harmonic, and this increase is 

followed by a sudden drop at the seventy-ninth harmonic, after which the harmonics increase 

slightly once more and then stabilize again.  There is no other significant activity in the upper 

harmonics. 
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Appendix 

Email Correspondence with Charles Madden, author of Fractals in Music:  Introductory 

Mathematics for Musical Analysis
83

 
 -----Original Message----- 

From: Jennifer Shafer  
To: ChasMadden@aol.com 
Sent: Sun, 31 May 2009 5:06 pm 
Subject: Fractals in Music: Fourier Analysis 
Mr. Madden: 
I have just completed my junior year as a piano performance major at East Texas Baptist University.  I have been working on an honor 
project this year that is based primarily on the infromation in the second edition of your book, Fractals in Music: Introductory Mathematics 
for Musical Analysis. 
The intent of my honors project is to analyze the inventions and sinfonia by Bach using several of the types of analysis discussed in your 
book.  If you don't mind, I would like to ask you some questions about the Fourier analysis chapter.   I have been trying to work through 
this chapter for some time, and there are some points that neither I nor my advisor (in mathematics) can understand. 
I was able to work (and, I thought, understand) the example given in the first part of the chapter, pp. 196-205.  Before trying to apply this 
concept to the Bach pieces that I have been working on, I decided to try to analyze th e Dodge brown music, since it was a short piece 
that I could check my work on.  This is where I ran into some problems. 
On all of the pieces that I have analyzed so far, I have used a pitch numbering system that begins at the bottom of the keyboard (making 
middle C have pitch number 40).  I noticed in chapter 6 that while the book uses numbers to designate the pitches, the numbers for each 
pitch are not always consistent from one piece to the next, implying that there are different systems used to determine the numbers?  Is 
there a correct way to number the pitches?  I found that I came much closer to matching the An, Bn, and Cn numbers on the Dodge 
brown piece when I used the numbers given on page 131, which are consistently 40 less than the numbers I originally used. 
In figure 9.12 (and in several subsequent figures), the "x"-axis is labeled as "pitch/frequency".  Does this mean that these points are the 
pitch numbers divided by the frequency numbers?  Initially I used the pitch numbers given on page 131 for this music because in the last 
paragraph of page 204, the book stated that "the samples are the pitches themselves."  Upon noticing the labeling of this axis, however, I 
went back and used a pitch numbering system beginning at the bottom of the keyboard (thus giving the pitches 49, 48, 49, etc. for this 
piece), and divided the pitches by the frequencies.  I haven't been able to make this graph look like the one shown in the book, although a 
graph with either the pitch or the frequency on the "x"-axis looks the same as the one given in figure 9.12.  I am not sure, then, which 
numbers I should use as my f(t) numbers in my transform. 
I have also not been able to figure out how to determine the S and T values for the Dodge brown music.  I have tried to use T=25, since 
that is the number of samples in the Dodge brown piece, but I have not been able to make my numbers co me out identically to the ones 
given in the book. 
I hope the above questions make sense.  I would greatly appreciate any explanation you can give.  Thank you. 
Sincerely, 
Jennifer Shafer 

 
 

 Dear Jennifer, 

 

Thank you so much for your note. I am glad that you are working with this material and really appreciate this feedback. I will need 

perhaps a day to scope out your question and its implications and will get back to you. 

 

Charles 

 Dear Jennifer, 

 

You're to be commended. Chapter nine is dense. It must require considerable concentration to understand it at all. You do well to test your 

understanding by trying to duplicate the Dodge brown music. The lesson there is to always check. We've all been known to err! (I recently 

tried to read a seemingly very important and highly-regarded book that had the entire premise backward. I'll spare you the details. Thus 

none of it can be true, but it took a while to figure out what was wrong.) 

 

Pitch numbering is rather arbitrary. It has not been standardized completely, but in advanced analysis we usually start at zero because it 

facilitates twelve-tone analysis. It's in essence a "moveable do" system. It might be good to always start at zero for the key-note, but then 

you get negative note numbers. This is not fatal, but it could be inconvenient. Or the lowest note. Starting every piece at A0=0, as in 

Scientific Pitch Notation (see p. xix) would sometimes make pitch values unnecessarily large, but notice that I had to do that with the 

Xenakis piece on p. 128. Also, you will out find sooner or later that pitch numbering systems for pianos and synthesizers usually start at 

A0=0, not 1. Whichever you start at, the results should be comparable, since it is a linear system (it is additive) and there won't be any 

distortions due to range. Thus, it's mostly a matter of convenience. The one thing that is required is 1 2 numbers for each octave (usually 

0-11, 12-23, etc.) in order to pick up all possible chromatic pitches.  

 

The numbering for the Dodge music began at C4=0 (middle C). How do I know that? It's buried on p. 131! That's a revision that needs to 

be made in the next edition: Make it easier to follow! Along with an explanation about the numbering. (I thought I did that, but I can't find 

it now. Maybe I imagined it.) G4=0 would also work. 

 

The slashes on pp. 205 and 207 in this case are intended to mean "or," not division. That is an overloaded symbol that I had not noticed, 

like parentheses for functions or grouping, such as f(x) ("ef of ex") or x(x) ("ex times ex"). Mathematics is filled with overloads like this and 

                                                 
83 Typographical errors have been left unchanged from original e-mails. 
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it takes a while to learn to tell the difference. You did right to try the Dodge music with the pitches, which in this instance I had considered 

to be the same as frequency. However, it should just be "pitch." "Frequency" is wrong and would not give a correct result. 

 

Summations (sigma) are from 0 to T-1. See p. 201. You start at time zero, and after one unit of time, t=1. In the Dodge "music," there are 

25 notes, but (T-1)=24. Thus, there are 24 units of time and S and T are 24. Try this number and any pitch numbering scheme you like, 

and if you get a different result for the Cn's (more than a decimal point or two in the fourth decimal place), let me know. Also, make sure 

you understand the summation formulas on p. 201. It might be wise to review them with your advisor. 

 

Notice that there is an analysis of the spectrum of the upper line of Invention No. 1. If you don't get this result, let's talk. 

 

By the way, this looks like a huge project. Are you sure it's not a master's thesis? 

 

Let me know how it goes. 

 

Regards, 

 

Charles 

 It's hard to see how I could have made the discussion any more difficult. You have revealed the need for more revisions. Thank you. 

 

I said: "In the Dodge music, there are 25 notes, but (T-1)=24. Thus, there are 24 units of time and S and T are 24." Well, duh, T is not 

equal to T-1. It should be T=2S=50. The book is wrong, too. T=2S. 

 

This is explained clumsily for the triple-sine example starting at page 200, where the highest frequency is 5 units, times 2 samples per unit, 

or S=10, and T=2S=20. Now, in the Brown music, we have S=25 samples, so T=50. That is what I used in the spreadsheets.  

 

I apologize for the error. Please let me know if anything else is unclear. 

 

Charles 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Mon, Jun 29, 2009 9:38 pm 
Subject: Re: Correction to discussion of Brown music 
Mr. Madden, 
I wanted to let you know that I think I have finally worked out all of the bugs in my working of the Dodge brown music.  I am finally 
getting the same answers as are given in the book.  I have not yet applied the formulas to my analysis of the inventions, but I am hopeful 
that I have finally fixed all the errors in my formulas. 
One more question:  As a recommendation, how many coefficients/terms should I work out?  I know that the more times I iterate the 
basic formulas, the more accurate my final equation will be, but is there a standard or minimum number of terms that I should start with? 
Thank you again for taking the time to help me with this project.  I greatly appreciate it. 
Jennifer Shafer 

 
 

 Dear Jennifer, 
 
Good for you, and thanks for your questions. You are the first to do so, and it gives me a chance to find out where things could be clearer. 
In fact, the question about the number of coefficients made me go back to the far reaches of my memory (that cave gets darker the older 
I get). In fact, there are several unstated assumptions here that even I could not remember at first. 
 
One assumption that is essential to know can be gathered from figure 9.12 for the Dodge brown music: There is one low-frequency 
sinusoid that dominates the motion. Its amplitude is given by C1. Its amplitude is shown on the far left in figure 9.13. It would correspond 
to the left half of the highest sine wave in figure 9.6.  
 
Another assumption is that there are several other sinusoids at frequencies of integer multiples of the lowest frequency, perhaps an infinite 
number of them, but our method causes them to repeat periodically and in reverse after half the number of samples. Their amplitudes for 
the Dodge brown music are given by C2 to C12 in table 9.5. These higher frequencies literally add together to make up the 
reconstituted waveform in figure 9.14. They would be comparable to the two faster tones in figure 9.6, which add up to the wavy form 
shown in figure 9.8. You can see a direct relationship to the height of the bars in figure 9.13 and the C-values in table 9.5. 
 
So, the direct answer to your question is "As many as you want," but it is not informative to use either more or less than one-half the 
number of samples, in this case 12 or 13 (13 would be the first repeated value). As you can see in some of the other examples in this 
chapter, there may be high-frequency harmonics that make a difference. A general rule for interpreting these things is that high-amplitude 
low-frequency harmonics give a long slow sweep to the melody while high-amplitude high-frequency harmonics give a more jagged 
contour and/or add to the curvilinear appearance. You might test this by sketching the lowest-frequency waveform and then the second-
lowest right over it, with the proper proportions, and add their values to get a third waveform resultant. It should look a tiny bit like the 
original, although a lot smoother. 
 
Also notice that we are talking about melodic contours here. The Inventions might have to be done using one analysis per voice. I haven't 
tried using this for multiple voices because I did not think that we could learn anything from that, although I'm not sure anymore what I 
did in figure 9.32 for the first Invention. If you need to know, I can dig into my files. 
 
Let me know how this turns out. Best wishes to your advisor. Does he understand any of this? 
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Charles 

 
 
 

 Incidentally, we are not iterating, we are calculating individual values that are then added up. Iteration refers to using previous values to 
successively approach an assymptote, such as a limit.  
 
Charles 

 
 
 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Mon, Aug 31, 2009 4:19 pm 
Subject: Fourier Analysis 
Mr. Madden, 
I have a few more questions for you, if you don't mind.  One more on the Dodge example, and then on the inventions. 
Once I had set up a spreadsheet with the formulas to perform the inverse transfrom, I found that I had to take the t values for the 
equation in table 9.4 out to 48, instead of the original 24.  Did I make a mistake in my formulas?  I cannot figure out why I would seem to 
need twice as much "time" in the inverse transform. 
Also from table 9.4, what does the f(t)=2.26 mean?  I thought it had something to do with margin of error, but I am not sure how to 
determine it. 
I have also begun trying to apply the process to the inventions.  I am wondering about the T and S values for the inventions.  For instance, 
in Invention No. 1 (right hand), I have 237 intervals (therefore, 238 samples), so is this the correct number to use for S, thus making 
T=476?  If this were the case, then the numbers s hould start repeating at n=120, right? (Mine don't.)  
On a slightly different note, in each of the inventions I measured time in the smallest (or sometimes next to the smallest) note value--
typically 16ths.  This allowed me to build my spreadsheets with my note/time graphs easily, but I am wondering if that doesn't work for 
this application because I often have one note lasting for more than one 16th notes.  This makes my time column skip numbers (i.e. 1, 3, 
4, if the rhythm was eighth-eighth-sixteenth).  Do I need to rework my spreadsheet to include each individual time value (1, 2, 3 . .  . ), 
and just "repeat" the note for its duration? 
I am not sure if this makes sense as I reread it, so I am attaching the file for Invention No. 1, hoping that that may clarify things.  Thank 
you for the time you have put into answering my questions. 
Jennifer Shafer 

 
 This is proving to be a huge project, isn't it? I hope you are finding it worthwhile. 

  
I'll study it out and get back to you soon. 
  
Regards 
  
Charles 

 
 
 
 

 Jennifer, 
  

Thanks for the spreadsheet. You've done some good work there. It looks like you understand the Hsu graph. I did not. I'd like to know 
how he makes it run to the left like that. It's apparently an engineering approach that I have seen only a very few times. If you can show 
me how it works, I would be grateful. 
  
I don't know why you would have to go out to 48 on the Dodge. Can you send the spreadsheet? 
  
In table 9.4, 2.26 is A0. It's a "DC Bias," as they say in electrical engineering, that is, an ofset from the x-axis. See pages 196-7. It's 
only in the equation for drawing the waveform and I didn't spend much time explaining it because we want the Fourier Transforms instead 
of the reconstructions. I stopped showing the reconstructions after figure 9.32. If it's a fault to ignore it, let me know and I'll try to do 
something with it in the next revision. 
  
I would rather count pitches than intervals. Hsu's contention that what counts is intervals is simply one way of working, i.e., his opinion. 
Intervals will not give us any information in the Fourier work; it's all about frequencies/pitches. I feel strongly that Hsu missed the boat in 
parts of his analyses. 
  
I don't recommend counting sixteenth notes.  That would add a dimension (time) that would greatly complicate the project and probably 
change the results. It would require multi-variate analysis, which I don't expect to be able to tackle in this lifetime. The objective in all this 
was to isolate the pitches from all other complications to provide a one-dimensional analysis. I know that some analysts insist that it's not 
an analysis without the durations. I disagree. You can learn something from one dimensional analysis; it's the scientific way. If they want 
additional dimensions, then this is not the right system to use. 
  
As for time as we use it, it is one unit of time per pitch, solely to project the pitches onto a plane. Throughout the book, pitches are given 
as "raw" (as my notation program calls them) to divorce them from duration. If a pitch is repeated in the score, it is repeated in the 
analysis, but not if it is held. The "sample values" are the notes themselves: same number of samples as notes. 
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I'm not sure how I gave the impression that your S and T should be so large. There should be 118 harmonics (half the number of pitches). 
I don't know what 175 across the top is, or 476 down the side. I also haven't yet studied your use of the sines and cosines, and whether 
you should have a squared sum at the bottom. So I need another day. I have attached my spreadsheet. 
  
Regards,  
  
Charles 

 
 
 

 You have processed only the cosines. You also need a spread for the sines. You need to also have a square root of the sum of squares of 
the sines and cosines. This gives the coefficients for the Fourier display. See the spreadsheet I sent last (2MB). 
 
 

 A couple of thoughts. 
  
Dodge should start repeating in reverse after 25 harmonics. So maybe your effort was correct, except that it's pitches not intervals. 
  
The number of columns should be the harmonic numbers that we want, which should be half of the number of pitches (again, because 
they start repeating in reverse). The number of rows should be the number of pitches. Also, don't forget the sine section to get the B 
coefficients, and to add the squares of the Bs to the squares of the As and take the square roots to get the Cs. The spreadsheet that I sent 
should be clear (I hope). 
  
I needed you three years ago before I revised this book to show me how impenetrable it is. Sheesh! Even I can't read it. I have to look at 
the spreadsheets! Which, of course, aren't available to readers. This is a drawback of not being able to test it on students before foisting it 
off on the public. 
  
It's good doing business with you. 
  
Charles 

 
 -----Original Message----- 

From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Wed, Sep 2, 2009 1:36 pm 
Subject: Re: Fourier analysis 
Mr. Madden, 
Attached is my spreadsheet for the Dodge music.  My charts for the the An and Bns are in the Coefficients sheet, followed in the other 
sheets by the inverse transform formulas, and the inverse transform graphs.  In the inverse transform graph, when I only took the time 
out to 24, I didn't get the complete graph.  However, as you said, the numbers do repeat backwards if I go to the 13th harmonic. 
My apologies--I didn't communicate clearly about my invention file.  I was aware that I hadn't finished the work for the Fourier analysis on 
this file.  I could tell that something was wrong with my numbers, so I didn't work out the sine part or the squares.  The reason I took it 
out so far to the right was because it never began repeating, and I thought I must have made an error somewhere along the line. 
Thanks for your explanation about the time aspect of it.  That makes much more sense, and I think I should be able to work that   part of 
it out now. 
I think I am still somewhat confused about the numbers T and S.  As you will see in my file for the Dodge music, I have S=25 (since there 
were 25 notes in the Dodge example) and T=50 (since T=2*S).  Those numbers were from our previous correspondence.  I was trying to 
take that concept and apply it to this piece.  Since I had 238 pitches, then S=238, and T=476.  Am I still making an error here? 
I am not sure that I completely understand the Hsu graph (or his logic to get there), and I get different numbers than he does, but for 
now I have been including his method with yours for comparison, and because his uses a much different method to determine the 
dimension.  I'm not sure what you mean by "run to the left", unless you mean the logarithmic scale on the bottom?   
Again, thank you for the time you have put into answering all of my questions.  You have been a wonderful help on this project. 
Jennifer Shafer 

 
 
 
 

 And you have been a wonderful correspondent. 
  

By run to the left on Hsu, I mean that the line slopes to the left. Richard Voss's charts do that too. I have never been able to find an 
example in a text, and Voss won't talk to me, so I don't know what they do. I, too, get different numbers for Hsu's dimension. In 
discussing dimension, he mentions an empirical constant of 2.5 or so, for which I have no clue. Hsu was, however, wonderfully helpful with 
an example of self-similarity in Invention No. 5. 
  
I'll have to look at Dodge later. I've been up all night and day. My wife, too. She's a night person, but had to go to jury duty today! 
  
Don't worry about checking for repeating harmonics in the worksheets, unless it's helpful to you. You can be sure that's what they do. I 
think it's Gareth Loy's Musimathics that explains why that is so. Incidentally, I heartilly recommend that book, even though it doesn't relate 
strictly to this one. His explanations of many things musimathical are superb. Anyway, the pitches represent one(-half) cycle of the lowest 
pitch (so it's the fundamental harmonic) and the front and back end-points create a sharp-edged window, which causes a distortion. That's 
the backwards-repeating bit. 
  
I confess that I have confused myself, too, about T and S. That is one thing that needs revision. It makes no sense! (Ouch, did I say that?) 
But notice their use in the formulas of the spreadsheet I sent for the Invention. What I meant is very clearly applied there. Now I have to 
figure out how to say it clearly. I think that the confusion is coming from trying to show how to sample a waveform and getting the Nyquist 
cut-off rule tangled up with it. I will probably cut that part out next time. It's not wrong, it's just garbled. (I had been dissed by a reviewer 
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of the first edition and was over-sensitive about it.) So, the rule for figuring out T and S is to maybe forget about it and to realize that 
we're looking for half the number of pitches for the top row (the harmonics--I got 118, you have 119, I guess--small difference in 
counting) and all the pitches for one of the left columns (we have used different columns)--238 total pitches--like I explained in an earlier 
email, and using the spreadsheet as a guide. I think 476 is an error. You'll see what T is by looking at the code in the very rightmost 
upper cell and what the other number is by looking at the divisor in one of the very lowest and leftmost cells. 
  
I have to say that I should have provided more than one spreadsheet in the book than just the Dodge. Big mistake. 
  
I hope that's a bit more clear. Keep me posted. 
  
Charles 

 
 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Thu, Sep 17, 2009 1:55 pm 
Subject: Fourier analysis 
Mr. Madden, 
 
 
I apologize if you get this message twice.  I sent it about a week ago, but I am not sure that it went through.  I realize that you are 
probably busy and may not have had time to respond, but I decided to resend it just in case it didn't go through the first time. 
Thank you again for the time that you have taken to assist me with 
this project.  I would never have gotten this far without your help. 
 
I think I have found my mistake in the Dodge analysis after reading 
your last e-mail.  I used 50 in one place in the formula I used to 
get the coefficients where I should have used 25; therefore, my time 
component in the end was also off by a power of 2. 
 
 
I finally got my file to work for the Bach Invention No. 1, but once I finished, I found that I have yet another dilemma.  I am working on 
writing my paper detailing the process for this project (as well as discussing the mathematical id eas behind the different types of analysis), 
and I find that I have essentially no idea what the spectrum graph is telling me.  I have read and re-read through all of chapter 9, and I 
can't figure out what I should be looking for in these graphs--what is significant about the results in the spectrum graph.  I'm sorry--I know 
I am probably just really dense, but I have really come up against a brick wall on this one.  Could you possibly explain this to me?  I would 
greatly appreciate it if you could enlighten me on this. 
 
 
Also, are there any books or other sources that you could recommend 
for an elementary understanding of attractors (strange and 
otherwise)?  I read/skimmed through many of the books in your 
bibliography last spring, but did not find one that I was able to 
really understand in-depth.  I need a source for my paper that will 
explain attractors (just in general, not necessarily as related to 
music) on a fairly simpl e level, since that is something that I am not 
sure I fully understand, and it will be unfamiliar to most or all of 
my readers.  I have so far been unsuccessful in finding a source that 
is at a sufficiently elementary level.  Anything you could suggest 
would be greatly appreciated. 
 
 
Thank you again. 
 
 
Jennifer Shafer 

 
 
 

 You are smart and the day will come, at the rate you are going, that you will encounter problems that no one can answer because no one 
knows. So I offer a possible method for future reference to help you get through those times. This method is slow and probably not 
applicable to you now, with deadlines and tight schedules, but it's what many researchers do when dealing with baffling deep problems. 1) 
Meditate on it. Spend days just thinking about it if you have to. Look at all the angles and try to find alternative ways to explain it. Go back 
over the texts and meditate again. After a while, a light dawns. 2) Be aware that many authors, including myself, do not write clearly. And 
they all make mistakes. There probably is not one book that is error-free. When baffled, meditate on it. That should help. 

  
Now, I repeat that I am happy to help. So here goes. 
  
I am of the opinion that my book is the clearest about attractors. Chapter One and Chapter Three have considerable material. Aristotle's 
problem of zeroing in on pi is an excellent example that should impress your advisors. (pp. 39ff). The attractor is the circle itself, and also 
the number 3.14159 . . . . Another example referred in the book is the railroad tracks approaching a point in the distance. The point is the 
attractor. You can see this in a line of telephone poles down the street, or the highway paint stripes ahead. The spiral on the cover of the 
book leads into the center. This point is an attractor for the spiral. Limits and convergence, which are referred to several times, are 
attractors. Attractors may be points, lines, circles, or anything toward which something tends. Tonic triads after dominant; pp after 
decresc., keytones, etc. 
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The best book that is not super technical, might be Fractals by Hans Lauwerier, although it is not just about attractors. (There doesn't 
seem to be one that is just about attractors.) Another good one, much more daunting, but the best overall, is Chaos and Fractals by Heinz-
Otto Peitgen et al. Don't bother with Mandelbrot. He is unintelligible. 
  
As for why we do Fourier transforms, that's a bit tougher to explain. There are some tiny clues tucked into little nooks in the text: "Fourier 
coefficients can be used to describe a melody's shape in terms of its constituent sinusoids." [p. 191] "What this really measures is the 
amplitudes of the sine and cosine waves that make up the complicated waveform that is the melodic shape." [p. 204] "The fundamental 
frequency provides the slow rising and falling shape, while the smaller, higher harmonics account for the smaller movements." [p. 206] 
"We can hear this piece [Invention I] as undulations of five main waves supplemented by smaller waves of higher frequencies." [p. 213] 
"As melodies become more complicated, their spectra broaden." [p. 219] (Thus, the spectra are a measure of how rough or smooth 
melodies are.) "Higher amplitudes of the upper harmonics indicate greater twisting and turning in the melodies." [p. 220] "The Fourier 
transforms discussed here provide in sight into the effect of high- and low-frequency components on melodic shapes." [p.220] 
  
For a good example of the effect of the harmonics, see figure 9.36, where Chopin's piece is 39 repetitions of the same figure, making a 
spike at the 39th harmonic. The low harmonics (including the "fundamental"--that is, the length of the piece) have almost nothing to do 
with it. On the other hand, Xenakis's very angular music shown in figure 9.28 has large-amplitude harmonics all across the field, high and 
low. The difference in the sound of these pieces is spectacular and the spectra show it. 
In general, then, we are trying to do what electrical engineers do when they do a spectral analysis of sound. They do this very often when 
analyzing clarinet tones, for example, and to a lesser extent but much more intensively when processing CDs. Engineers know all about it, 
but music theorists have never applied it to melodic and harmonic analysis. Sooner or later, we will have to automate it so that it can read 
a score and make a mathematical analysis, but the geniuses who can do that aren't here yet. 
  
If this is too technical or vague, let's talk again. 
Charles 

 
 

 I hope I have not put you off. 
 

Charles 

 
 

 Mr. Madden, 
 
 

No, you have not put me off.  I apologize for not responding to your last e-mail.  The last few weeks have been incredibly busy for me as 
the deadline for my project is coming up soon along with a chamber ensemble peformance two days before.  (And my flash drive with my 
25-page rough draft on it mysteriously disappeard, so I have had to rewrite all of it.)   
 
 
Your explanation of the attractors did help, and although I don't have time to interlibrary loan the Lauwerier book, I was finally able to find 
an journal article online that is at a sufficiently elementary level for me to (mostly) understand it. 
 
 
The more I think about (or, as you put it, meditate on) the Fourier analysis, the more sense it makes to me.  As I understand it now, the 
spectral analysis is showing the ?amplitudes?--I'm not sure if that is the correct term--of the various smaller "sound" curves that are 
combined to make the shape of the melodic line that I started with.  From the examples in your book and the graphs that I have made, it 
seems to me that the lowest harmonics typically have higher amplitudes while the higher harmonics vary in amplitude.  If (as in all the 
pieces I am analyzing) the higher harmonics have little to no activity (very little amplitude), this just tells me that the melodic line is 
"simple."  Not necessarily simplistic, but less angular or random than some of the examples in your book, like the Xenakis.  Or, as you put 
it, the Bach melodies I am studying have less turning and twisting, and therefore their sound curves are much simpler. 
 
 
Is this a correct summary statement? 
 
 
Thanks again for all your help. 
 
 
Jennifer Shafer 

 
 

 At this point in the correspondence,  Mr. Madden sent an e-mail (which I deleted) offering the loan of his copy of the Lauwerier book.   
 
 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Fri, Oct 2, 2009 6:31 pm 
Subject: Re: Fourier Analysis 
Mr. Madden, 
That is a very generous offer, and I think I will take you up on it.  Although I interlibrary loaned a copy of it last spring, I know I won't get 
it through the university library in time for it to be of any use to me now, so I really appreciate you offering to lend me yours.  I will, of 
course, be more than happy to pay you for the shipping costs, and I will return the book to you as soon as I can.  I appreciate your 
continuing interest in my project and your willingness to help me. 
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I guess you will need my shipping address: 
Jennifer Shafer 
ETBU Box 6-1338 
1209 North Grove Street 
Marshall, TX 75670 
If you can't ship it directly to my ETBU box, just use the street address and the office here will deliver it to my post office box. 
Once again, I greatly appreciate your help. 
Jennifer Shafer 

 
 

 OK 
 

I also wanted to say that I am using "meditation" in the sense of deep and prolonged thought. 
  
Also, that your computer technicians may have a system backup that contains your rough draft. 
  
Charles 

 
 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Tue, Oct 6, 2009 6:36 pm 
Subject: Re: Fourier Analysis 
Mr. Madden, 
I received your book in the mail today.  Thank you for loaning it to me. 
I checked with our IT department, and they were unable to recover my document, unfortunately.  But I have it all rewritten now, and am 
moving forward with the rest of it. 
One more question:  In the Hsu article where they are measuring the dimension of music ("Fractal Geometry of Music, published 1990), 
they have a dimension of 2.4184 for the Bach Invention No. 1.  I have duplicated their procedure, and although I have a couple of slight 
deviations from their interval counts, overall I have the same results.  However, what I cannot figure out is why they only use the intervals 
from 2 to 10 when they measure the dimension.  I realize why they omit the 14 and 19 from the left hand--they are obviously not 
important, recurring intervals, and they omit 0 because they are using logarithms and 0 gives an error.  But I can't figure out why 
they omit 1, 11, and 12--especially 1, since the minor seconds are a large percentage of the total intervals. 
I am attaching part of my file for invention no. 1.  In the worksheet marked "Plot, Hsu", you can see the two charts: my version, including 
the intervals from 1 to 12, inclusive; and their version, including the intervals from 2 to 10, inclusive.  When I do it their way, I get very 
close to their dimension, as you can see in the box to the left.  My version seems like a more reasonable number for a dimension, but I 
would still like to figure out why they are omitting certain intervals.  Any enlightment that you can give me would be greatly appreciated.  
Thanks. 
Jennifer Shafer 

 
 

 Glad you got the book. I was getting worried, since the tracking information did not show it having arrived. You do not need to reimburse 
me. Just send it back when you're finished. 

  
Thanks for the worksheet. I couldn't understand it before, and disputed their value on page 157, but I will try to see what they are doing. 
Apparently you at least know how to set up the file and I'll study your setup. 
  
Our leaves were turning beautifully in the mountains, then it snowed and they all fell down. A very short season. 
  
Regards, 
  
Charles 

 
 
 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Thu, Oct 8, 2009 9:08 am 
Subject: Re: Fourier Analysis 
 
 
Mr. Madden, 
Thanks for taking the time to look into it for me.  Please let me know if you get it figured out.  When I first started learning about fractals 
and their applications to music for a research paper my sophomore year, I came across this article, which I used as an example in my 
paper.  I was able to duplicate their graph and their dimension using the information given in the article, and I never even thought about 
questioning why they didn't include all of the intervals.  I guess I just figured that it was something I couldn't understand without having a 
deeper understanding of the topic.  Now I am not sure how to apply their work to my own analyses . . . I have e-mailed my math advisor 
the same question, but I have not received a response yet. 
As I think I told you in my first e-mail, I am going to school in Texas.  However, I don't think I ever told you that I am originally from 
southwest Wyoming.   I miss the mountains and the ch anging seasons a lot when I am down here.  It has been rainy and a little bit cooler 
here this last week, but my family has been getting snow while everything here is still green--the leaves don't usually change here until late 
October or early November.  I definitely miss the cold weather that I am used to from home whiel I am in Texas for the fall and winter 
months! 
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Jennifer  
 

 
 

 Would that be Evanston? 
  

Your Hsu graph looks different from the one in their article. It is cut off on the right and the bottom (yours is, too). That's where your 
missing 12, 14 and 19 are. Also, your version of their version has not picked up 1.35, which is interval 1. Maybe it's a problem of the range 
in the graph(?). I'd check that first. 
  
As you know, I did not agree with Hsu's value for the dimension. I never was able to understand their constant c. I'm not sure I would 
make an issue of it until I had a greater understanding of what they were doing. I have never seen a decent explanation of log-log graphs, 
although I'm sure there must be one somewhere. My basic question is a bit stupid: If the vertical scale can go negative (fractions), why 
not the horizontal too? 
  
It's a bit of a minefield arguing with the big boys. They know something I don't, and they don't want to help. I tried to open a dialog with 
Richard Voss about Gaussian white noise and he just yelled at me. Mandelbrot didn't even bother to answer when I asked about the 
validity of the Hurst exponent. 
  
Keep up the good work. 
  
Charles 

 
 
 

 -----Original Message----- 
From: Jennifer Shafer  
To: chasmadden@aol.com 
Sent: Thu, Oct 8, 2009 2:39 pm 
Subject: Hsu graph 
No, actually not quite that far south.  I am from a small town, Big Piney, which is slightly east and a good bit north of Evanston. 
I have often wondered why the graph is called a log-log plot when only one of the axes uses a logarithmic scale.  I guess it is because the 
numbers that are being graphed on the other axis are logarithms anyway?  But, if I understand it correctly, that is why the horizontal scale 
can't go negative--because you can't take a logarithm of any number less than or equal to 0.  Is this correct? 
I didn't communicate well in my first e-mail or in the first file I sent you.  I kept talking about them omitting the 1, 12, 14, and 19 
intervals.  I was referring to omitting them when they calculated the dimension, not from the graph, like I have (I hope) shown in the new 
file.  I had deleted them from my graph so that I could get the trendline correct.  I think this new file shows what I mean. 
Would you mind taking a look at the file I am attaching?  It is almost an exact copy of the Hsu's graph.  There are three differences that I 
am aware of.  First, my x-axis goes out to 100.  I cannot make it stop at 20; I guess because the x-axis is a logarithmic scale?  I am not 
too concerned about that at this point.  Secondly, I have graphed two series, some points of which are duplicated.  Best I can tell, the 
series titled "All Intervals" duplicates their graph very closely (except for a few minor discrepancies (my third difference) in the two interval 
counts, which affect the graph only slightly).  The second series, labelled "Intervals 2-10" is graphed with only the numbers for intervals 2-
10, and I have used this series to draw the trendline.  When I use this, my graph and my trendline looks like theirs except for the 
duplicated entries and a slight deviation at intervals 9 and 10, due to t he differences in the interval counts.  The computed dimension, whi 
le not perfectly exact, is very close. 
I don't want to make an issue of it, since I guess I don't fully understand what they are doing (I don't know where their constant comes 
from, either).  But since I can't find any reasoning for omitting those interval counts when computing the dimension, I am wondering 
whether I should include this method in my own analyses of the inventions and sinfonia (I could just leave it out), and if so, whether I 
should include all the intervals, or try to figure out their method of omitting some of the intervals.  In the end I guess I have to decide this 
for myself, since it's my project, but what would you suggest? 
I have to say that I usually send these e-mails with some amount of apprehension--having questions for the big boys intimidates me, 
which is why I really appreciate your willingness to keep answering my stupid questions, or at least getting me on the right track to 
figuring them out. 
Jennifer 

  

  
 Since I don't know how Hsu got that number, I hesitate to say anything about it. I don't know why any of the data points should be left 

out. Also, Hsu's number differs greatly from either yours or mine. It would be unwise to say anything other than "it needs further study." 
It's okay to admit that you cannot verify someone else's number. In fact, it may actually help another someone to tactfully say that. 

  
At this point, I am not entirely sure of the validity of using dimension in music. I think it's a good idea, but I need to put it on a firmer basis 
involving statistical analysis. Mandelbrot's Hurst exponent is a measure of dimension that modifies Brownian motion, which in turn is a 
measure of correlation, which is a statistic, and so on. It will take me several years to sort this out. 
  
It seems to me that the Fourier analyses are the most useful because they go the deepest and say the most to a practiced eye, but also 
require the most explanation. The orbit diagrams that relate to attractors are certainly more eyecatching and self-evident and should be 
included if only for effect. 
  
Hope that helps. 
  
Charles 

 
 
 

 


